DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tracing the incorporation of the “ninth sulfur” into the nitrogenase cofactor precursor with selenite and tellurite

Abstract

We report Molybdenum nitrogenase catalyses the reduction of N2 to NH3 at its cofactor, an [(R-homocitrate)MoFe7S9C] cluster synthesized via the formation of a [Fe8S9C] L-cluster prior to the insertion of molybdenum and homocitrate. We have previously identified a [Fe8S8C] L*-cluster, which is homologous to the core structure of the L-cluster but lacks the ‘ninth sulfur’ in the belt region. However, direct evidence and mechanistic details of the L*- to L-cluster conversion upon ‘ninth sulfur’ insertion remain elusive. Here we trace the ‘ninth sulfur’ insertion using SeO32- and TeO32- as ‘labelled’ SO32-. Biochemical, electron paramagnetic resonance and X-ray absorption spectroscopy/extended X-ray absorption fine structure studies suggest a role of the ‘ninth sulfur’ in cluster transfer during cofactor biosynthesis while revealing the incorporation of Se2-- and Te2--like species into the L-cluster. Density functional theory calculations further point to a plausible mechanism involving in situ reduction of SO32- to S2-, thereby suggesting the utility of this reaction to label the catalytically important belt region for mechanistic investigations of nitrogenase.

Authors:
 [1]; ORCiD logo [2];  [3];  [2];  [2]; ORCiD logo [4]; ORCiD logo [5];  [6];  [6]; ORCiD logo [6]; ORCiD logo [6];  [7];  [8]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [2]
  1. Univ. of California, Irvine, CA (United States); Kyoto Univ. (Japan)
  2. Univ. of California, Irvine, CA (United States)
  3. Univ. of California, Davis, CA (United States)
  4. Univ. of Wisconsin, Madison, WI (United States)
  5. Kyoto Univ. (Japan)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Institutes of Health (NIH); MEXT Japan; Kyoto University Research Fund for Young Scientist
OSTI Identifier:
1870879
Grant/Contract Number:  
AC02-76SF00515; GM67626; GM141046; R35 GM126961; GM110501; GM126289; 19H02733; 20K21207; P30GM133894
Resource Type:
Accepted Manuscript
Journal Name:
Nature Chemistry
Additional Journal Information:
Journal Volume: 13; Journal Issue: 12; Journal ID: ISSN 1755-4330
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; biocatalysis; biosynthesis; metalloproteins

Citation Formats

Tanifuji, Kazuki, Jasniewski, Andrew J., Villarreal, David, Stiebritz, Martin T., Lee, Chi Chung, Wilcoxen, Jarett, Okhi, Yasuhiro, Chatterjee, Ruchira, Bogacz, Isabel, Yano, Junko, Kern, Jan, Hedman, Britt, Hodgson, Keith O., Britt, R. David, Hu, Yilin, and Ribbe, Markus W. Tracing the incorporation of the “ninth sulfur” into the nitrogenase cofactor precursor with selenite and tellurite. United States: N. p., 2021. Web. doi:10.1038/s41557-021-00799-8.
Tanifuji, Kazuki, Jasniewski, Andrew J., Villarreal, David, Stiebritz, Martin T., Lee, Chi Chung, Wilcoxen, Jarett, Okhi, Yasuhiro, Chatterjee, Ruchira, Bogacz, Isabel, Yano, Junko, Kern, Jan, Hedman, Britt, Hodgson, Keith O., Britt, R. David, Hu, Yilin, & Ribbe, Markus W. Tracing the incorporation of the “ninth sulfur” into the nitrogenase cofactor precursor with selenite and tellurite. United States. https://doi.org/10.1038/s41557-021-00799-8
Tanifuji, Kazuki, Jasniewski, Andrew J., Villarreal, David, Stiebritz, Martin T., Lee, Chi Chung, Wilcoxen, Jarett, Okhi, Yasuhiro, Chatterjee, Ruchira, Bogacz, Isabel, Yano, Junko, Kern, Jan, Hedman, Britt, Hodgson, Keith O., Britt, R. David, Hu, Yilin, and Ribbe, Markus W. Mon . "Tracing the incorporation of the “ninth sulfur” into the nitrogenase cofactor precursor with selenite and tellurite". United States. https://doi.org/10.1038/s41557-021-00799-8. https://www.osti.gov/servlets/purl/1870879.
@article{osti_1870879,
title = {Tracing the incorporation of the “ninth sulfur” into the nitrogenase cofactor precursor with selenite and tellurite},
author = {Tanifuji, Kazuki and Jasniewski, Andrew J. and Villarreal, David and Stiebritz, Martin T. and Lee, Chi Chung and Wilcoxen, Jarett and Okhi, Yasuhiro and Chatterjee, Ruchira and Bogacz, Isabel and Yano, Junko and Kern, Jan and Hedman, Britt and Hodgson, Keith O. and Britt, R. David and Hu, Yilin and Ribbe, Markus W.},
abstractNote = {We report Molybdenum nitrogenase catalyses the reduction of N2 to NH3 at its cofactor, an [(R-homocitrate)MoFe7S9C] cluster synthesized via the formation of a [Fe8S9C] L-cluster prior to the insertion of molybdenum and homocitrate. We have previously identified a [Fe8S8C] L*-cluster, which is homologous to the core structure of the L-cluster but lacks the ‘ninth sulfur’ in the belt region. However, direct evidence and mechanistic details of the L*- to L-cluster conversion upon ‘ninth sulfur’ insertion remain elusive. Here we trace the ‘ninth sulfur’ insertion using SeO32- and TeO32- as ‘labelled’ SO32-. Biochemical, electron paramagnetic resonance and X-ray absorption spectroscopy/extended X-ray absorption fine structure studies suggest a role of the ‘ninth sulfur’ in cluster transfer during cofactor biosynthesis while revealing the incorporation of Se2-- and Te2--like species into the L-cluster. Density functional theory calculations further point to a plausible mechanism involving in situ reduction of SO32- to S2-, thereby suggesting the utility of this reaction to label the catalytically important belt region for mechanistic investigations of nitrogenase.},
doi = {10.1038/s41557-021-00799-8},
journal = {Nature Chemistry},
number = 12,
volume = 13,
place = {United States},
year = {Mon Oct 11 00:00:00 EDT 2021},
month = {Mon Oct 11 00:00:00 EDT 2021}
}

Works referenced in this record:

All-Ferrous Titanium(III) Citrate Reduced Fe Protein of Nitrogenase:  An XAS Study of Electronic and Metrical Structure
journal, June 1998

  • Musgrave, Kristin B.; Angove, Hayley C.; Burgess, Barbara K.
  • Journal of the American Chemical Society, Vol. 120, Issue 21
  • DOI: 10.1021/ja980598z

X‐Ray Crystallographic Analysis of NifB with a Full Complement of Clusters: Structural Insights into the Radical SAM‐Dependent Carbide Insertion During Nitrogenase Cofactor Assembly
journal, December 2020

  • Kang, Wonchull; Rettberg, Lee A.; Stiebritz, Martin T.
  • Angewandte Chemie International Edition, Vol. 60, Issue 5
  • DOI: 10.1002/anie.202011367

Nitrogenase MoFe-Protein at 1.16 A Resolution: A Central Ligand in the FeMo-Cofactor
journal, September 2002


Maturation of nitrogenase cofactor — the role of a class E radical SAM methyltransferase NifB
journal, April 2016


Rethinking the Nitrogenase Mechanism: Activating the Active Site
journal, November 2019


Electron Transfer in Nitrogenase
journal, January 2020


New Synthetic Routes to Metal-Sulfur Clusters Relevant to the Nitrogenase Metallo-Clusters
journal, May 2013

  • Ohki, Yasuhiro; Tatsumi, Kazuyuki
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 639, Issue 8-9
  • DOI: 10.1002/zaac.201300081

Spectroscopic Characterization of an Eight-Iron Nitrogenase Cofactor Precursor that Lacks the “9 th Sulfur”
journal, September 2019

  • Jasniewski, Andrew J.; Wilcoxen, Jarett; Tanifuji, Kazuki
  • Angewandte Chemie International Edition, Vol. 58, Issue 41
  • DOI: 10.1002/anie.201907593

Structural evidence for a dynamic metallocofactor during N 2 reduction by Mo-nitrogenase
journal, June 2020


Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases
journal, March 2020


Biosynthesis of Nitrogenase Metalloclusters
journal, December 2013

  • Ribbe, Markus W.; Hu, Yilin; Hodgson, Keith O.
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr400463x

Biosynthesis of the Metalloclusters of Nitrogenases
journal, June 2016


Identity and function of an essential nitrogen ligand of the nitrogenase cofactor biosynthesis protein NifB
journal, April 2020

  • Rettberg, Lee A.; Wilcoxen, Jarett; Jasniewski, Andrew J.
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-020-15627-9

[Fe4Te4(TePh)4]3⊖, the First Telluride–Tellurolate Complex
journal, October 1987

  • Simon, Wolfgang; Wilk, Alfons; Kerbs, Bernt
  • Angewandte Chemie International Edition in English, Vol. 26, Issue 10
  • DOI: 10.1002/anie.198710091

Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor
journal, December 2015


Nitrogenase Fe protein: A molybdate/homocitrate insertase
journal, October 2006

  • Hu, Y.; Corbett, M. C.; Fay, A. W.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 46
  • DOI: 10.1073/pnas.0602651103

Radical SAM-Dependent Carbon Insertion into the Nitrogenase M-Cluster
journal, September 2012


Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor
journal, November 2011


FeMo cofactor maturation on NifEN
journal, October 2006

  • Hu, Y.; Corbett, M. C.; Fay, A. W.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 46
  • DOI: 10.1073/pnas.0602647103

Ligand binding to the FeMo-cofactor: Structures of CO-bound and reactivated nitrogenase
journal, September 2014


Probing the coordination and function of Fe4S4 modules in nitrogenase assembly protein NifB
journal, July 2018


The tetranuclear trianion [Fe4Te4(SC6H5)4]3-: crystal and molecular structure and magnetic properties
journal, September 1990

  • Barbaro, Pierluigi; Bencini, Alessandro; Bertini, Ivano
  • Journal of the American Chemical Society, Vol. 112, Issue 20
  • DOI: 10.1021/ja00176a025

Acidities of Arsenic (III) and Arsenic (V) Thio- and Oxyacids in Aqueous Solution using the CBS-QB3/CPCM Method
journal, April 2009

  • Zimmermann, Merle D.; Tossell, John A.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 17
  • DOI: 10.1021/jp809123q

Mechanism of Molybdenum Nitrogenase
journal, January 1996

  • Burgess, Barbara K.; Lowe, David J.
  • Chemical Reviews, Vol. 96, Issue 7
  • DOI: 10.1021/cr950055x

Developments in the Biomimetic Chemistry of Cubane-Type and Higher Nuclearity Iron–Sulfur Clusters
journal, January 2014

  • Lee, Sonny C.; Lo, Wayne; Holm, R. H.
  • Chemical Reviews, Vol. 114, Issue 7
  • DOI: 10.1021/cr4004067

Synthetic nickel-iron NiFe3Q4 cubane-type clusters (S = 3/2) by reductive rearrangement of linear [Fe3Q4(SEt)4]3- (Q = sulfur, selenium)
journal, October 1990

  • Ciurli, Stefano; Yu, Shi Bao; Holm, R. H.
  • Journal of the American Chemical Society, Vol. 112, Issue 22
  • DOI: 10.1021/ja00178a053

Tracing the ‘ninth sulfur’ of the nitrogenase cofactor via a semi-synthetic approach
journal, April 2018

  • Tanifuji, Kazuki; Lee, Chi Chung; Sickerman, Nathaniel S.
  • Nature Chemistry, Vol. 10, Issue 5
  • DOI: 10.1038/s41557-018-0029-4