DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanoscale Phase Separation and Large Refrigerant Capacity in Magnetocaloric Material LaFe11.5Si1.5

Abstract

Here, ferromagnetic transitions, the magnetocaloric effect, and the atomic-scale microstructure in an annealed bulk material of LaFe11.5Si1.5 were investigated using magnetic measurements, Mössbauer spectroscopy, high-resolution X-ray diffraction analysis, and high-resolution transmission electron microscopy. The results provide evidence of the coexistence of two ferromagnetic phases with different Curie temperatures. The phase with a Curie temperature of 216 K corresponds to a Si-rich phase of a NaZn13-type structure with a small lattice volume, whereas the phase with a Curie temperature of 185 K corresponds to a Si-poor phase of a NaZn13-type structure with a large lattice volume. This phase coexistence is observed on a nanometer scale and it can account for inverse thermal hysteresis of the ferromagnetic transition in the Si-rich phase during warming. Furthermore, the phase coexistence helps the bulk material achieve a refrigeration capacity of 170 J kg-1 due to a combination of the magnetocaloric effect in each phase. It is determined that the magnetocaloric effect in the Si-rich and the Si-poor phase brings about a maximum of the total entropy change of -3.55 and -6.80 and J kg-1 K-1 at respective Curie temperatures, respectively. Fundamentally, the phase coexistence indicates coloring of Si atoms in the lattice of a NaZn13-typemore » structure and can be attributed to nanoscale phase separation of a disordered precursor during annealing of the bulk material. The nanoscale phase separation may occur in other magnetocaloric materials, thus allowing for improvement of their refrigeration capacity.« less

Authors:
 [1];  [2];  [3]; ORCiD logo [4];  [4]; ORCiD logo [5]
  1. Northeastern Univ., (China)
  2. Xi'an Jiaotong Univ., (China)
  3. Northern Illinois Univ., DeKalb, IL (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Northeastern Univ., Shenyang (China)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Natural Science Foundation of China (NSFC); Ministry of Science and Technology (MOST) (China); China Scholarship Council
OSTI Identifier:
1870429
Grant/Contract Number:  
AC02-06CH11357; 51831003; 50671024; 2012CB619405
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 33; Journal Issue: 8; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; grain; lattices, magnetic properties; phase separation; phase transitions

Citation Formats

Huang, Dan, Ma, Tianyu, Brown, Dennis E., Lapidus, Saul H., Ren, Yang, and Gao, Jianrong. Nanoscale Phase Separation and Large Refrigerant Capacity in Magnetocaloric Material LaFe11.5Si1.5. United States: N. p., 2021. Web. doi:10.1021/acs.chemmater.0c04913.
Huang, Dan, Ma, Tianyu, Brown, Dennis E., Lapidus, Saul H., Ren, Yang, & Gao, Jianrong. Nanoscale Phase Separation and Large Refrigerant Capacity in Magnetocaloric Material LaFe11.5Si1.5. United States. https://doi.org/10.1021/acs.chemmater.0c04913
Huang, Dan, Ma, Tianyu, Brown, Dennis E., Lapidus, Saul H., Ren, Yang, and Gao, Jianrong. Mon . "Nanoscale Phase Separation and Large Refrigerant Capacity in Magnetocaloric Material LaFe11.5Si1.5". United States. https://doi.org/10.1021/acs.chemmater.0c04913. https://www.osti.gov/servlets/purl/1870429.
@article{osti_1870429,
title = {Nanoscale Phase Separation and Large Refrigerant Capacity in Magnetocaloric Material LaFe11.5Si1.5},
author = {Huang, Dan and Ma, Tianyu and Brown, Dennis E. and Lapidus, Saul H. and Ren, Yang and Gao, Jianrong},
abstractNote = {Here, ferromagnetic transitions, the magnetocaloric effect, and the atomic-scale microstructure in an annealed bulk material of LaFe11.5Si1.5 were investigated using magnetic measurements, Mössbauer spectroscopy, high-resolution X-ray diffraction analysis, and high-resolution transmission electron microscopy. The results provide evidence of the coexistence of two ferromagnetic phases with different Curie temperatures. The phase with a Curie temperature of 216 K corresponds to a Si-rich phase of a NaZn13-type structure with a small lattice volume, whereas the phase with a Curie temperature of 185 K corresponds to a Si-poor phase of a NaZn13-type structure with a large lattice volume. This phase coexistence is observed on a nanometer scale and it can account for inverse thermal hysteresis of the ferromagnetic transition in the Si-rich phase during warming. Furthermore, the phase coexistence helps the bulk material achieve a refrigeration capacity of 170 J kg-1 due to a combination of the magnetocaloric effect in each phase. It is determined that the magnetocaloric effect in the Si-rich and the Si-poor phase brings about a maximum of the total entropy change of -3.55 and -6.80 and J kg-1 K-1 at respective Curie temperatures, respectively. Fundamentally, the phase coexistence indicates coloring of Si atoms in the lattice of a NaZn13-type structure and can be attributed to nanoscale phase separation of a disordered precursor during annealing of the bulk material. The nanoscale phase separation may occur in other magnetocaloric materials, thus allowing for improvement of their refrigeration capacity.},
doi = {10.1021/acs.chemmater.0c04913},
journal = {Chemistry of Materials},
number = 8,
volume = 33,
place = {United States},
year = {Mon Apr 05 00:00:00 EDT 2021},
month = {Mon Apr 05 00:00:00 EDT 2021}
}

Works referenced in this record:

Reversible solid-state hydrogen-pump driven by magnetostructural transformation in the prototype system La(Fe,Si) 13 H y
journal, October 2012

  • Krautz, Maria; Moore, James D.; Skokov, Konstantin P.
  • Journal of Applied Physics, Vol. 112, Issue 8
  • DOI: 10.1063/1.4759438

Multiple Metamagnetic Transitions in the Magnetic Refrigerant La ( Fe , Si ) 13 H x
journal, October 2008


Magnetic Relaxation and Asymmetric Quadrupole Doublets in the Mössbauer Effect
journal, January 1965


Enhancement of Refrigeration Capacity and Table-Like Magnetocaloric Effect in LaFe 10.7Co 0.8Si 1.5/ La 0.6Pr 0.4Fe 10.7Co 0.8Si 1.5 Composite
journal, October 2015


The dynamics of spontaneous hydrogen segregation in LaFe 13− x Si x H y
journal, May 2014

  • Baumfeld, Oliver L.; Gercsi, Zsolt; Krautz, Maria
  • Journal of Applied Physics, Vol. 115, Issue 20
  • DOI: 10.1063/1.4879099

Strain-driven inverse thermal hysteresis behaviour in half-doped manganites
journal, May 2008


Site dependent hardening of the lanthanum metal lattice by hydrogen absorption
journal, March 2011


Large magnetocaloric effect in La(FexSi1−x)13 itinerant-electron metamagnetic compounds
journal, August 2002

  • Fujieda, S.; Fujita, A.; Fukamichi, K.
  • Applied Physics Letters, Vol. 81, Issue 7
  • DOI: 10.1063/1.1498148

Microstructure and magnetic properties of as-quenched cubic and tetragonal La(Fe1−xSix)13 compounds
journal, November 2013


Exotic hysteresis of ferrimagnetic transition in Laves compound TbCo 2
journal, December 2019


Stability and Magnetocaloric Properties of Sintered La(Fe, Mn, Si)$_{13}$H$_{z}$ Alloys
journal, October 2011


Zero thermal expansion in NaZn 13 -type La(Fe,Si) 13 compounds
journal, January 2015

  • Wang, Wei; Huang, Rongjin; Li, Wen
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 4
  • DOI: 10.1039/C4CP04672B

Application of the exchange-striction model for the calculation of the FeRh alloys magnetic properties
journal, May 2019


Magnetocaloric effect of LaFe11.35Co0.6Si1.05 alloy
journal, May 2017


Phase separation-induced nanoscale heterogeneity in Gd5Si1.5Ge2.5
journal, September 2020


Exploring La(Fe,Si)13-based magnetic refrigerants towards application
journal, September 2012


Formation mechanisms of NaZn13-type phase in giant magnetocaloric La–Fe–Si compounds during rapid solidification and annealing
journal, October 2015


Structure and magnetic transition of LaFe 13  x Si x compounds
journal, October 2003


Low-temperature large reversible “table-like” magnetocaloric effect in HoNi0.9Cu0.1Al compound
journal, January 2015


Broadening of temperature working range in magnetocaloric La(Fe,Co,Si)13- based multicomposite
journal, November 2017


The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe,Si,Co)13
journal, June 2012


Anomalous behavior of thermal expansion of α-Fe impurities in the La(Fe,Co,Si)13- based alloys modified by Mn or selected lanthanides (Ce, Pr, Ho)
journal, February 2019


Giant Negative Thermal Expansion in NaZn 13 -Type La(Fe, Si, Co) 13 Compounds
journal, July 2013

  • Huang, Rongjin; Liu, Yanying; Fan, Wei
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja405161z

Mössbauer spectroscopic evaluation of chemical and electronic distributions in La(Fe0.81Si0.19)13
journal, March 2004

  • Hamdeh, H. H.; Al-Ghanem, H.; Hikal, W. M.
  • Journal of Magnetism and Magnetic Materials, Vol. 269, Issue 3
  • DOI: 10.1016/j.jmmm.2003.07.004

Recent developments in magnetocaloric materials
journal, May 2005

  • Gschneidner, K. A.; Pecharsky, V. K.; Tsokol, A. O.
  • Reports on Progress in Physics, Vol. 68, Issue 6, p. 1479-1539
  • DOI: 10.1088/0034-4885/68/6/R04

Itinerant electron metamagnetic transition in La(FexSi1−x)13 intermetallic compounds
journal, April 1999

  • Fujita, A.; Akamatsu, Y.; Fukamichi, K.
  • Journal of Applied Physics, Vol. 85, Issue 8
  • DOI: 10.1063/1.370471

Table-like magnetocaloric effect and enhanced refrigerant capacity of HPS La(Fe,Si)13-based composites by Ce–Co grain boundary diffusion
journal, February 2020


La(Fe,Si)13-based magnetic refrigerants obtained by novel processing routes
journal, September 2008

  • Lyubina, Julia; Gutfleisch, Oliver; Kuz’min, Michael D.
  • Journal of Magnetism and Magnetic Materials, Vol. 320, Issue 18
  • DOI: 10.1016/j.jmmm.2008.04.116

Effect of α-Fe impurities on the field dependence of magnetocaloric response in LaFe11.5Si1.5
journal, October 2015


EXPGUI , a graphical user interface for GSAS
journal, April 2001


Structure and magnetic entropy change of melt-spun LaFe11.57Si1.43 ribbons
journal, February 2005

  • Yan, A.; Müller, K. -H.; Gutfleisch, O.
  • Journal of Applied Physics, Vol. 97, Issue 3
  • DOI: 10.1063/1.1844605

Determination of the Antimony Valence State in Eu 10 Mn 6 Sb 13
journal, January 2004

  • Brown, Dennis E.; Johnson, Charles E.; Grandjean, Fernande
  • Inorganic Chemistry, Vol. 43, Issue 4
  • DOI: 10.1021/ic035172m

Magnetic entropy change in Fe-based compound LaFe10.6Si2.4
journal, November 2000

  • Zhang, X. X.; Wen, G. H.; Wang, F. W.
  • Applied Physics Letters, Vol. 77, Issue 19
  • DOI: 10.1063/1.1323993

Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6
journal, June 2001

  • Hu, Feng-xia; Shen, Bao-gen; Sun, Ji-rong
  • Applied Physics Letters, Vol. 78, Issue 23
  • DOI: 10.1063/1.1375836

Large magnetic entropy change and low hysteresis loss in the Nd- and Co-doped La(Fe,Si)13 compounds
journal, April 2008

  • Shen, Jun; Li, Yang-Xian; Zhang, Jian
  • Journal of Applied Physics, Vol. 103, Issue 7
  • DOI: 10.1063/1.2829035

Pyrochlores. IV. Crystallographic and Mössbauer studies of A 2 FeSbO 7 pyrochlores
journal, December 1968

  • Knop, Osvald; Brisse, François; Meads, R. E.
  • Canadian Journal of Chemistry, Vol. 46, Issue 24
  • DOI: 10.1139/v68-635

The correlation of the magnetic properties and the magnetocaloric effect in (Gd1−xErx)NiAl alloys
journal, November 1998

  • Korte, B. J.; Pecharsky, V. K.; Gschneidner, K. A.
  • Journal of Applied Physics, Vol. 84, Issue 10
  • DOI: 10.1063/1.368830

Itinerant-electron metamagnetic transition and large magnetovolume effects in La ( Fe x Si 1 x ) 13 compounds
journal, November 2001


Magneto-elastic coupling in La(Fe, Mn, Si) 13 H y within the Bean-Rodbell model
journal, May 2016

  • Bez, Henrique N.; Nielsen, Kaspar K.; Norby, Poul
  • AIP Advances, Vol. 6, Issue 5
  • DOI: 10.1063/1.4944400

Magnetocaloric effect in NaZn13-type La1−xPrxFe11.44Si1.56 melt-spun ribbons
journal, May 2010

  • Ding, M. Z.; Liu, Z.; Chen, R. J.
  • Journal of Applied Physics, Vol. 107, Issue 9
  • DOI: 10.1063/1.3359807

Large entropy change, adiabatic temperature change, and small hysteresis in La(Fe,Mn)11.6Si1.4 strip-cast flakes
journal, March 2015


First-order magnetic phase transition in LaFe 11.7 Si 1.3 studied using Mössbauer spectroscopy
journal, June 2004


PHASE RELATIONS AND MICROSTRUCTURE OF La - Fe - Si ALLOYS UNDER DIFFERENT SOLIDIFICATION CONDITIONS
journal, December 2011

  • Gao, Jianrong; Cao, Hui; Zhang, Yikun
  • International Journal of Modern Physics B, Vol. 25, Issue 31
  • DOI: 10.1142/S0217979211066763

Evidence for a short-range chemical order of Ge atoms and its critical role in inducing a giant magnetocaloric effect in Gd5Si1.5Ge2.5
journal, November 2019


Table-like magnetocaloric effect in Gd 56 Ni 15 Al 27 Zr 2 alloy and its field independence feature
journal, September 2015

  • Agurgo Balfour, E.; Ma, Z.; Fu, H.
  • Journal of Applied Physics, Vol. 118, Issue 12
  • DOI: 10.1063/1.4931765

La(Fe,Co,Si)13 bulk alloys and ribbons with high temperature magnetocaloric effect
journal, May 2010

  • Jasinski, M.; Liu, J.; Jacobs, S.
  • Journal of Applied Physics, Vol. 107, Issue 9
  • DOI: 10.1063/1.3335892

Direct observation of paramagnetic spin fluctuations in LaFe 13−x Si x
journal, December 2019

  • Faske, Tom; Radulov, Iliya A.; Hölzel, Markus
  • Journal of Physics: Condensed Matter, Vol. 32, Issue 11
  • DOI: 10.1088/1361-648x/ab5a99

Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La–Fe–Si alloys
journal, May 2011


Optimization of La(Fe,Co) 13− x Si x based compounds for magnetic refrigeration
journal, May 2007


Study of the critical behaviour of the magnetization and electrical resistivity in cubic La(Fe, Si)13 compounds
journal, April 1983

  • Palstra, T. T. M.; Mydosh, J. A.; Nieuwenhuys, G. J.
  • Journal of Magnetism and Magnetic Materials, Vol. 36, Issue 3
  • DOI: 10.1016/0304-8853(83)90128-2

Structural and magnetic properties of magnetocaloric LaFe13–xSix compounds synthesized by high energy ball-milling
journal, December 2010


Recent Progress in Exploring Magnetocaloric Materials
journal, December 2009


Great magnetic entropy change in La(Fe, M ) 13 ( M =Si, Al) with Co doping
journal, July 2000


Memory effect and inverse thermal hysteresis in La0.87Mn0.98Fe0.02Ox
journal, May 2007

  • De, K.; Majumdar, S.; Giri, S.
  • Journal of Applied Physics, Vol. 101, Issue 10
  • DOI: 10.1063/1.2714645

Phase equilibria in the Fe–La–Si ternary system
journal, January 2012