DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements

Abstract

Predicting the power and loads of wind turbines in waked inflow conditions still presents a major modelling challenge. It requires the accurate modelling of the atmospheric flow conditions, wakes of upstream turbines and the response of the turbine of interest. Rigorous validations of model frameworks against measurements of utility-scale wind turbines in such scenarios remain limited to date. In this study, six models of different fidelity are compared against measurements from the DanAero experiment. The two benchmark cases feature a full-wake and partial-wake scenario, respectively. The simulations are compared against local pressure forces and inflow velocities measured on several blade sections of the downstream turbine, as well as met mast measurements and standard SCADA data. Regardless of the model fidelity, reasonable agreements are found in terms of the wake characteristics and turbine response. For instance, the azimuth variation of the mean aerodynamic forces acting on the blade was captured with a mean relative error of 15-20%. Additionally, while various model-specific deficiencies could be identified, the study highlights the need for further full-scale measurement campaigns with even more extensive instrumentation. Furthermore, it is concluded that validations should not be limited to integrated and/or time-averaged quantities that conceal characteristic spatial or temporalmore » variations.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [2];  [1]; ORCiD logo [3];  [1]
  1. Uppsala Univ., Visby (Sweden). Wind Energy Section
  2. Technical Univ. of Denmark, Roskilde (Denmark). DTU Wind Energy
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Wind Energy Technologies Office
OSTI Identifier:
1869687
Report Number(s):
NREL/JA-5000-81924
Journal ID: ISSN 0960-1481; MainId:82697;UUID:429a3794-9143-4202-be5a-6d44f485aced;MainAdminID:63981
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Renewable Energy
Additional Journal Information:
Journal Volume: 191; Journal ID: ISSN 0960-1481
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; DanAero experiment; validation; wake modeling; wind turbine loads

Citation Formats

Asmuth, Henrik, Navarro Diaz, Gonzalo P., Madsen, Helge Aagaard, Branlard, Emmanuel, Meyer Forsting, Alexander R., Nilsson, Karl, Jonkman, Jason, and Ivanell, Stefan. Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements. United States: N. p., 2022. Web. doi:10.1016/j.renene.2022.04.047.
Asmuth, Henrik, Navarro Diaz, Gonzalo P., Madsen, Helge Aagaard, Branlard, Emmanuel, Meyer Forsting, Alexander R., Nilsson, Karl, Jonkman, Jason, & Ivanell, Stefan. Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements. United States. https://doi.org/10.1016/j.renene.2022.04.047
Asmuth, Henrik, Navarro Diaz, Gonzalo P., Madsen, Helge Aagaard, Branlard, Emmanuel, Meyer Forsting, Alexander R., Nilsson, Karl, Jonkman, Jason, and Ivanell, Stefan. Tue . "Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements". United States. https://doi.org/10.1016/j.renene.2022.04.047. https://www.osti.gov/servlets/purl/1869687.
@article{osti_1869687,
title = {Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements},
author = {Asmuth, Henrik and Navarro Diaz, Gonzalo P. and Madsen, Helge Aagaard and Branlard, Emmanuel and Meyer Forsting, Alexander R. and Nilsson, Karl and Jonkman, Jason and Ivanell, Stefan},
abstractNote = {Predicting the power and loads of wind turbines in waked inflow conditions still presents a major modelling challenge. It requires the accurate modelling of the atmospheric flow conditions, wakes of upstream turbines and the response of the turbine of interest. Rigorous validations of model frameworks against measurements of utility-scale wind turbines in such scenarios remain limited to date. In this study, six models of different fidelity are compared against measurements from the DanAero experiment. The two benchmark cases feature a full-wake and partial-wake scenario, respectively. The simulations are compared against local pressure forces and inflow velocities measured on several blade sections of the downstream turbine, as well as met mast measurements and standard SCADA data. Regardless of the model fidelity, reasonable agreements are found in terms of the wake characteristics and turbine response. For instance, the azimuth variation of the mean aerodynamic forces acting on the blade was captured with a mean relative error of 15-20%. Additionally, while various model-specific deficiencies could be identified, the study highlights the need for further full-scale measurement campaigns with even more extensive instrumentation. Furthermore, it is concluded that validations should not be limited to integrated and/or time-averaged quantities that conceal characteristic spatial or temporal variations.},
doi = {10.1016/j.renene.2022.04.047},
journal = {Renewable Energy},
number = ,
volume = 191,
place = {United States},
year = {Tue Apr 12 00:00:00 EDT 2022},
month = {Tue Apr 12 00:00:00 EDT 2022}
}

Works referenced in this record:

Wind-Turbine and Wind-Farm Flows: A Review
journal, September 2019

  • Porté-Agel, Fernando; Bastankhah, Majid; Shamsoddin, Sina
  • Boundary-Layer Meteorology, Vol. 174, Issue 1
  • DOI: 10.1007/s10546-019-00473-0

A new simulation method for turbines in wake?applied to extreme response during operation
journal, January 2004

  • Thomsen, Kenneth; Madsen, Helge Aagaard
  • Wind Energy, Vol. 8, Issue 1
  • DOI: 10.1002/we.130

Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an actuator disc and a wind turbine
journal, August 2016


Filtered lifting line theory and application to the actuator line model
journal, January 2019

  • Martínez-Tossas, Luis A.; Meneveau, Charles
  • Journal of Fluid Mechanics, Vol. 863
  • DOI: 10.1017/jfm.2018.994

On atmospheric stability in the dynamic wake meandering model: On atmospheric stability in the dynamic wake meandering model
journal, September 2013

  • Keck, Rolf-Erik; de Maré, Martin; Churchfield, Matthew J.
  • Wind Energy, Vol. 17, Issue 11
  • DOI: 10.1002/we.1662

“Blind test” calculations of the performance and wake development for a model wind turbine
journal, February 2013


A Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data
journal, July 2019

  • Dang, Ruijun; Yang, Yi; Hu, Xiao-Ming
  • Remote Sensing, Vol. 11, Issue 13
  • DOI: 10.3390/rs11131590

Characterization of the unsteady flow in the nacelle region of a modern wind turbine
journal, March 2011

  • Zahle, Frederik; Sørensen, Niels N.
  • Wind Energy, Vol. 14, Issue 2
  • DOI: 10.1002/we.418

A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect
journal, October 2020


Atmospheric turbulence affects wind turbine nacelle transfer functions
journal, January 2017

  • St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew
  • Wind Energy Science, Vol. 2, Issue 1
  • DOI: 10.5194/wes-2-295-2017

Inflow Turbulence Generation Methods
journal, January 2017


Blind Test 2 calculations for two in-line model wind turbines where the downstream turbine operates at various rotational speeds
journal, October 2014


Implementation of the blade element momentum model on a polar grid and its aeroelastic load impact
journal, January 2020

  • Madsen, Helge Aagaard; Larsen, Torben Juul; Pirrung, Georg Raimund
  • Wind Energy Science, Vol. 5, Issue 1
  • DOI: 10.5194/wes-5-1-2020

Wall-modeled lattice Boltzmann large-eddy simulation of neutral atmospheric boundary layers
journal, October 2021

  • Asmuth, Henrik; Janßen, Christian F.; Olivares-Espinosa, Hugo
  • Physics of Fluids, Vol. 33, Issue 10
  • DOI: 10.1063/5.0065701

Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
journal, April 2011

  • Porté-Agel, Fernando; Wu, Yu-Ting; Lu, Hao
  • Journal of Wind Engineering and Industrial Aerodynamics, Vol. 99, Issue 4
  • DOI: 10.1016/j.jweia.2011.01.011

Imposing resolved turbulence in CFD simulations
journal, January 2011

  • Gilling, L.; Sørensen, N. N.
  • Wind Energy, Vol. 14, Issue 5
  • DOI: 10.1002/we.449

Aeroelastic load validation in wake conditions using nacelle-mounted lidar measurements
journal, January 2020

  • Conti, Davide; Dimitrov, Nikolay; Peña, Alfredo
  • Wind Energy Science, Vol. 5, Issue 3
  • DOI: 10.5194/wes-5-1129-2020

Brief communication: A fast vortex-based smearing correction for the actuator line
journal, January 2020

  • Meyer Forsting, Alexander R.; Pirrung, Georg R.; Ramos-García, Néstor
  • Wind Energy Science, Vol. 5, Issue 1
  • DOI: 10.5194/wes-5-349-2020

Laminar-turbulent transition characteristics of a 3-D wind turbine rotor blade based on experiments and computations
journal, January 2020

  • Özçakmak, Özge Sinem; Madsen, Helge Aagaard; Sørensen, Niels Nørmark
  • Wind Energy Science, Vol. 5, Issue 4
  • DOI: 10.5194/wes-5-1487-2020

Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation
journal, August 1997


How Long Is Long Enough When Measuring Fluxes and Other Turbulence Statistics?
journal, June 1994


A simple improvement of a tip loss model for actuator disc simulations
journal, April 2020

  • Pirrung, Georg Raimund; Laan, Maarten Paul; Ramos‐García, Néstor
  • Wind Energy, Vol. 23, Issue 4
  • DOI: 10.1002/we.2481

An Alternative Function For The Wind And Temperature Gradients In Unstable Surface Layers
journal, April 2001


Large-eddy simulations of the Lillgrund wind farm: LES of the Lillgrund wind farm
journal, February 2014

  • Nilsson, Karl; Ivanell, Stefan; Hansen, Kurt S.
  • Wind Energy, Vol. 18, Issue 3
  • DOI: 10.1002/we.1707

Tip loss corrections for wind turbine computations
journal, January 2005

  • Shen, Wen Zhong; Mikkelsen, Robert; Sørensen, Jens Nørkær
  • Wind Energy, Vol. 8, Issue 4
  • DOI: 10.1002/we.153

Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments
journal, February 2018


Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion part I: Derivation and validation
journal, November 2017

  • Geier, Martin; Pasquali, Andrea; Schönherr, Martin
  • Journal of Computational Physics, Vol. 348
  • DOI: 10.1016/j.jcp.2017.05.040

Bubble functions for the lattice Boltzmann method and their application to grid refinement
journal, April 2009

  • Geier, M.; Greiner, A.; Korvink, J. G.
  • The European Physical Journal Special Topics, Vol. 171, Issue 1
  • DOI: 10.1140/epjst/e2009-01026-6

Impact of Wind Veer and the Coriolis Force for an Idealized Farm to Farm Interaction Case
journal, March 2019

  • Eriksson, Ola; Breton, Simon-Philippe; Nilsson, Karl
  • Applied Sciences, Vol. 9, Issue 5
  • DOI: 10.3390/app9050922

Actuator line simulations of wind turbine wakes using the lattice Boltzmann method
journal, January 2020

  • Asmuth, Henrik; Olivares-Espinosa, Hugo; Ivanell, Stefan
  • Wind Energy Science, Vol. 5, Issue 2
  • DOI: 10.5194/wes-5-623-2020

Wind turbines in atmospheric flow: fluid–structure interaction simulations with hybrid turbulence modeling
journal, January 2021

  • Grinderslev, Christian; Sørensen, Niels Nørmark; Horcas, Sergio González
  • Wind Energy Science, Vol. 6, Issue 3
  • DOI: 10.5194/wes-6-627-2021

Wind farm interference and terrain interaction simulation by means of an adaptive actuator disc
journal, March 2019

  • Navarro Diaz, Gonzalo P.; Saulo, A. Celeste; Otero, Alejandro D.
  • Journal of Wind Engineering and Industrial Aerodynamics, Vol. 186
  • DOI: 10.1016/j.jweia.2018.12.018

Study on Actuator Line Modeling of Two NREL 5-MW Wind Turbine Wakes
journal, March 2018

  • Yu, Ziying; Zheng, Xing; Ma, Qingwei
  • Applied Sciences, Vol. 8, Issue 3
  • DOI: 10.3390/app8030434

Wind Turbine Wake Characterization with Nacelle-Mounted Wind Lidars for Analytical Wake Model Validation
journal, April 2018

  • Carbajo Fuertes, Fernando; Markfort, Corey; Porté-Agel, Fernando
  • Remote Sensing, Vol. 10, Issue 5
  • DOI: 10.3390/rs10050668

An Improved Simplec Method on Collocated Grids for Steady and Unsteady flow Computations
journal, March 2003

  • Shen, Wen Zhong; Michelsen, Jess A.; Sørensen, Niels N.
  • Numerical Heat Transfer, Part B: Fundamentals, Vol. 43, Issue 3
  • DOI: 10.1080/713836202

Stratocumulus-capped mixed layers derived from a three-dimensional model
journal, June 1980

  • Deardorff, James W.
  • Boundary-Layer Meteorology, Vol. 18, Issue 4
  • DOI: 10.1007/BF00119502

Grand challenges in the science of wind energy
journal, October 2019


Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling
journal, January 1986


Validation of the GPU-Accelerated CFD Solver ELBE for Free Surface Flow Problems in Civil and Environmental Engineering
journal, July 2015


Comparison of two LES codes for wind turbine wake studies
journal, June 2014


Assessment of Turbulence Modelling in the Wake of an Actuator Disk with a Decaying Turbulence Inflow
journal, September 2018

  • Olivares-Espinosa, Hugo; Breton, Simon-Philippe; Nilsson, Karl
  • Applied Sciences, Vol. 8, Issue 9
  • DOI: 10.3390/app8091530

An improved k - ϵ model applied to a wind turbine wake in atmospheric turbulence : An improved
journal, April 2014

  • van der Laan, M. Paul; Sørensen, Niels N.; Réthoré, Pierre-Elouan
  • Wind Energy, Vol. 18, Issue 5
  • DOI: 10.1002/we.1736

Wake meandering: a pragmatic approach
journal, July 2008

  • Larsen, Gunner C.; Madsen, Helge Aa.; Thomsen, Kenneth
  • Wind Energy, Vol. 11, Issue 4, p. 377-395
  • DOI: 10.1002/we.267

FAST.Farm development and validation of structural load prediction against large eddy simulations
journal, October 2020

  • Shaler, Kelsey; Jonkman, Jason
  • Wind Energy, Vol. 24, Issue 5
  • DOI: 10.1002/we.2581

Numerical Investigation of Neutral and Unstable Planetary Boundary Layers
journal, January 1972


Big wind power: seven questions for turbulence research
journal, January 2019


Calibration and Validation of the Dynamic Wake Meandering Model for Implementation in an Aeroelastic Code
journal, October 2010

  • Madsen, H. Aa.; Larsen, G. C.; Larsen, T. J.
  • Journal of Solar Energy Engineering, Vol. 132, Issue 4
  • DOI: 10.1115/1.4002555

Why the Coriolis force turns a wind farm wake clockwise in the Northern Hemisphere
journal, January 2017

  • van der Laan, Maarten Paul; Sørensen, Niels Nørmark
  • Wind Energy Science, Vol. 2, Issue 1
  • DOI: 10.5194/wes-2-285-2017

A new k-ϵ eddy viscosity model for high reynolds number turbulent flows
journal, March 1995


A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics
journal, January 2012


Numerical Modeling of Wind Turbine Wakes
journal, May 2002

  • So̸rensen, Jens No̸rkær; Shen, Wen Zhong
  • Journal of Fluids Engineering, Vol. 124, Issue 2
  • DOI: 10.1115/1.1471361

Atmospheric boundary‐layer characteristics from ceilometer measurements. Part 1: A new method to track mixed layer height and classify clouds
journal, July 2018

  • Kotthaus, Simone; Grimmond, C. Sue B.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 144, Issue 714
  • DOI: 10.1002/qj.3299

Comparison of four large-eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator-line-based wind turbine modeling
journal, May 2018

  • Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Yilmaz, Ali Emre
  • Journal of Renewable and Sustainable Energy, Vol. 10, Issue 3
  • DOI: 10.1063/1.5004710

A vortex-based tip/smearing correction for the actuator line
journal, January 2019

  • Meyer Forsting, Alexander R.; Pirrung, Georg Raimund; Ramos-García, Néstor
  • Wind Energy Science, Vol. 4, Issue 2
  • DOI: 10.5194/wes-4-369-2019