DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ternary antimonide NaCd 4 Sb 3 : hydride synthesis, crystal structure and transport properties

Abstract

Abstract A new compound NaCd 4 Sb 3 ( R m , a =4.7013(1) Å, c =35.325(1), Å, Z=3, T =100 K) featuring the RbCd 4 As 3 structure type has been discovered in the Na−Cd−Sb system, in addition to the previously reported NaCdSb phase. NaCd 4 Sb 3 and NaCdSb were herein synthesized using sodium hydride as the source of sodium. The hydride method allows for targeted sample composition, improved precursor mixing, and an overall quicker synthesis time when compared to traditional methods using Na metal as a precursor. The NaCd 4 Sb 3 structure was determined from single‐crystal X‐ray diffraction and contained the splitting of a Cd site not seen in previous isostructural phases. NaCd 4 Sb 3 decomposes into NaCdSb plus melt at 766 K, as determined via in‐situ high‐temperature PXRD. The electronic structure calculations predict the NaCd 4 Sb 3 phase to be semi‐metallic, which compliments the measured thermoelectric property data, indicative of a p ‐type semi‐metallic material. The crystal structure, elemental analysis, thermal properties, and electronic structure are herein discussed in further detail.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Department of Chemistry Iowa State University Ames Iowa 50011 United States
  2. Department of Chemistry Iowa State University Ames Iowa 50011 United States, Ames Laboratory U.S. Department of Energy Ames Iowa 50011 United States
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE; USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; National Science Foundation (NSF)
OSTI Identifier:
1869027
Alternate Identifier(s):
OSTI ID: 1869029; OSTI ID: 1872220
Report Number(s):
IS-J-10,819
Journal ID: ISSN 0044-2313; e202200095
Grant/Contract Number:  
AC02-06CH11357; AC02-07CH11358; DMR-1944551
Resource Type:
Published Article
Journal Name:
Zeitschrift fuer Anorganische und Allgemeine Chemie
Additional Journal Information:
Journal Name: Zeitschrift fuer Anorganische und Allgemeine Chemie Journal Volume: 648 Journal Issue: 15; Journal ID: ISSN 0044-2313
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; antimony; hydride; sodium; thermoelectric; unconventional synthesis

Citation Formats

Courteau, Brittany, Gvozdetskyi, Volodymyr, Lee, Shannon, Cox, Tori, and Zaikina, Julia V. Ternary antimonide NaCd 4 Sb 3 : hydride synthesis, crystal structure and transport properties. Germany: N. p., 2022. Web. doi:10.1002/zaac.202200095.
Courteau, Brittany, Gvozdetskyi, Volodymyr, Lee, Shannon, Cox, Tori, & Zaikina, Julia V. Ternary antimonide NaCd 4 Sb 3 : hydride synthesis, crystal structure and transport properties. Germany. https://doi.org/10.1002/zaac.202200095
Courteau, Brittany, Gvozdetskyi, Volodymyr, Lee, Shannon, Cox, Tori, and Zaikina, Julia V. Fri . "Ternary antimonide NaCd 4 Sb 3 : hydride synthesis, crystal structure and transport properties". Germany. https://doi.org/10.1002/zaac.202200095.
@article{osti_1869027,
title = {Ternary antimonide NaCd 4 Sb 3 : hydride synthesis, crystal structure and transport properties},
author = {Courteau, Brittany and Gvozdetskyi, Volodymyr and Lee, Shannon and Cox, Tori and Zaikina, Julia V.},
abstractNote = {Abstract A new compound NaCd 4 Sb 3 ( R m , a =4.7013(1) Å, c =35.325(1), Å, Z=3, T =100 K) featuring the RbCd 4 As 3 structure type has been discovered in the Na−Cd−Sb system, in addition to the previously reported NaCdSb phase. NaCd 4 Sb 3 and NaCdSb were herein synthesized using sodium hydride as the source of sodium. The hydride method allows for targeted sample composition, improved precursor mixing, and an overall quicker synthesis time when compared to traditional methods using Na metal as a precursor. The NaCd 4 Sb 3 structure was determined from single‐crystal X‐ray diffraction and contained the splitting of a Cd site not seen in previous isostructural phases. NaCd 4 Sb 3 decomposes into NaCdSb plus melt at 766 K, as determined via in‐situ high‐temperature PXRD. The electronic structure calculations predict the NaCd 4 Sb 3 phase to be semi‐metallic, which compliments the measured thermoelectric property data, indicative of a p ‐type semi‐metallic material. The crystal structure, elemental analysis, thermal properties, and electronic structure are herein discussed in further detail.},
doi = {10.1002/zaac.202200095},
journal = {Zeitschrift fuer Anorganische und Allgemeine Chemie},
number = 15,
volume = 648,
place = {Germany},
year = {Fri May 20 00:00:00 EDT 2022},
month = {Fri May 20 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/zaac.202200095

Save / Share:

Works referenced in this record:

A versatile low temperature synthetic route to Zintl phase precursors: Na4Si4, Na4Ge4 and K4Ge4 as examples
journal, January 2009

  • Ma, Xuchu; Xu, Fen; Atkins, Tonya M.
  • Dalton Transactions, Vol. 0, Issue 46, p. 10250-10255
  • DOI: 10.1039/b913320h

Metallische Schmelzen - Reaktionsmedien zur Präparation intermetallischer Verbindungen
journal, November 2005

  • Kanatzidis, Mercouri G.; Pöttgen, Rainer; Jeitschko, Wolfgang
  • Angewandte Chemie, Vol. 117, Issue 43
  • DOI: 10.1002/ange.200462170

Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties
journal, June 2004

  • Snyder, G. Jeffrey; Christensen, Mogens; Nishibori, Eiji
  • Nature Materials, Vol. 3, Issue 7
  • DOI: 10.1038/nmat1154

The remarkable crystal chemistry of the Ca14AlSb11 structure type, magnetic and thermoelectric properties
journal, March 2019

  • Hu, Yufei; Cerretti, Giacomo; Kunz Wille, Elizabeth L.
  • Journal of Solid State Chemistry, Vol. 271
  • DOI: 10.1016/j.jssc.2018.12.037

Composition and the thermoelectric performance of β-Zn4Sb3
journal, January 2010

  • Toberer, Eric S.; Rauwel, Protima; Gariel, Sylvain
  • Journal of Materials Chemistry, Vol. 20, Issue 44
  • DOI: 10.1039/c0jm02011g

Projector augmented-wave method
journal, December 1994


Zintl phases with group 15 elements and the transition metals: A brief overview of pnictides with diverse and complex structures
journal, February 2019


Cadmium antimonide, CdSb
journal, December 1988

  • Range, K. J.; Pfauntsch, J.; Klement, U.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 44, Issue 12
  • DOI: 10.1107/S0108270188009801

Hydride assisted synthesis of the high temperature thermoelectric phase: Yb 14 MgSb 11
journal, October 2019

  • Justl, Andrew P.; Cerretti, Giacomo; Bux, Sabah K.
  • Journal of Applied Physics, Vol. 126, Issue 16
  • DOI: 10.1063/1.5117291

Routes for high-performance thermoelectric materials
journal, November 2018


Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Ein Konzept zur Syntheseplanung in der Festkörperchemie
journal, October 2002


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Promising materials for thermoelectric applications
journal, October 2019


GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


R factors in Rietveld analysis: How good is good enough?
journal, March 2006


Thermoelectric cooler application in electronic cooling
journal, October 2004


Ternary ACd 4 P 3 (A = Na, K) Nanostructures via a Hydride Solution-Phase Route
journal, July 2021


The Metal Flux: A Preparative Tool for the Exploration of Intermetallic Compounds
journal, November 2005

  • Kanatzidis, Mercouri G.; Pöttgen, Rainer; Jeitschko, Wolfgang
  • Angewandte Chemie International Edition, Vol. 44, Issue 43
  • DOI: 10.1002/anie.200462170

Synthesis of Metastable Inorganic Solids with Extended Structures
journal, June 2020


Computationally guided discovery of thermoelectric materials
journal, August 2017


Rapid Phase Screening via Hydride Route: A Discovery of K 8– x Zn 18+3 x Sb 16
journal, November 2018


Predictive Synthesis
journal, July 2021


Relationship between thermoelectric figure of merit and energy conversion efficiency
journal, June 2015

  • Kim, Hee Seok; Liu, Weishu; Chen, Gang
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 27
  • DOI: 10.1073/pnas.1510231112

Advanced Thermoelectric Design: From Materials and Structures to Devices
journal, July 2020


Structure of Cd 12.7(1) Sb 10
journal, February 2007

  • Zelinska, Oksana Ya.; Bie, Haiying; Mar, Arthur
  • Chemistry of Materials, Vol. 19, Issue 6
  • DOI: 10.1021/cm0629659

Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases
journal, March 2017


Denken wie ein Chemiker: Thermoelektrika intuitiv
journal, April 2016

  • Zeier, Wolfgang G.; Zevalkink, Alex; Gibbs, Zachary M.
  • Angewandte Chemie, Vol. 128, Issue 24
  • DOI: 10.1002/ange.201508381

Expanding the I–II–V Phase Space: Soft Synthesis of Polytypic Ternary and Binary Zinc Antimonides
journal, August 2018


Facile Synthesis of Ba 1– x K x Fe 2 As 2 Superconductors via Hydride Route
journal, November 2014

  • Zaikina, Julia V.; Batuk, Maria; Abakumov, Artem M.
  • Journal of the American Chemical Society, Vol. 136, Issue 48
  • DOI: 10.1021/ja509907r

Ternary and higher pnictides; prospects for new materials and applications
journal, January 2011

  • Cameron, Jamie M.; Hughes, Robert W.; Zhao, Yimin
  • Chemical Society Reviews, Vol. 40, Issue 7
  • DOI: 10.1039/c0cs00132e

Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1-xZn2Sb2
journal, November 2005

  • Gascoin, F.; Ottensmann, S.; Stark, D.
  • Advanced Functional Materials, Vol. 15, Issue 11
  • DOI: 10.1002/adfm.200500043

A Concept for Synthesis Planning in Solid-State Chemistry
journal, October 2002


Ternary K 2 Zn 5 As 4 -type pnictides Rb 2 Cd 5 As 4 and Rb 2 Zn 5 Sb 4 , and the solid solution Rb 2 Cd 5 (As,Sb) 4
journal, April 2013

  • He, Hua; Stoyko, Stanislav S.; Mar, Arthur
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 69, Issue 5
  • DOI: 10.1107/S010827011300766X

Thermal Stability and Thermoelectric Properties of NaZnSb
journal, December 2018

  • Gvozdetskyi, Volodymyr; Owens-Baird, Bryan; Hong, Sangki
  • Materials, Vol. 12, Issue 1
  • DOI: 10.3390/ma12010048

Thermoelectric power generation: from new materials to devices
journal, July 2019

  • Tan, Gangjian; Ohta, Michihiro; Kanatzidis, Mercouri G.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2152
  • DOI: 10.1098/rsta.2018.0450

Yb 14 MnSb 11 :  New High Efficiency Thermoelectric Material for Power Generation
journal, April 2006

  • Brown, Shawna R.; Kauzlarich, Susan M.; Gascoin, Franck
  • Chemistry of Materials, Vol. 18, Issue 7
  • DOI: 10.1021/cm060261t

Enhanced Thermoelectric Figure of Merit of Zintl Phase YbCd2-xMnxSb2 by Chemical Substitution
journal, August 2011

  • Guo, Kai; Cao, Qi-Gao; Feng, Xian-Juan
  • European Journal of Inorganic Chemistry, Vol. 2011, Issue 26
  • DOI: 10.1002/ejic.201100282

Thinking Like a Chemist: Intuition in Thermoelectric Materials
journal, April 2016

  • Zeier, Wolfgang G.; Zevalkink, Alex; Gibbs, Zachary M.
  • Angewandte Chemie International Edition, Vol. 55, Issue 24
  • DOI: 10.1002/anie.201508381

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations
journal, May 2013

  • Gaultois, Michael W.; Sparks, Taylor D.; Borg, Christopher K. H.
  • Chemistry of Materials, Vol. 25, Issue 15
  • DOI: 10.1021/cm400893e

Eight-Coordinated Arsenic in the Zintl Phases RbCd 4 As 3 and RbZn 4 As 3 : Synthesis and Structural Characterization
journal, September 2011

  • He, Hua; Tyson, Chauntae; Bobev, Svilen
  • Inorganic Chemistry, Vol. 50, Issue 17
  • DOI: 10.1021/ic2009418

Clathrate XI K 58 Zn 122 Sb 207 : A New Branch on the Clathrate Family Tree
journal, October 2020

  • Cox, Tori; Gvozdetskyi, Volodymyr; Bertolami, Mark
  • Angewandte Chemie International Edition, Vol. 60, Issue 1
  • DOI: 10.1002/anie.202011120

Polymorphism in Zintl Phases ACd 4 Pn 3 : Modulated Structures of NaCd 4 Pn 3 with Pn = P, As
journal, July 2016


From NaZn 4 Sb 3 to HT -Na 1– x Zn 4– y Sb 3 : Panoramic Hydride Synthesis, Structural Diversity, and Thermoelectric Properties
journal, October 2019


New and Old Concepts in Thermoelectric Materials
journal, November 2009

  • Sootsman, Joseph R.; Chung, Duck Young; Kanatzidis, Mercouri G.
  • Angewandte Chemie International Edition, Vol. 48, Issue 46, p. 8616-8639
  • DOI: 10.1002/anie.200900598

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu)
journal, January 2010

  • Toberer, Eric S.; May, Andrew F.; Melot, Brent C.
  • Dalton Trans., Vol. 39, Issue 4
  • DOI: 10.1039/B914172C

Homologous Series of Rare-Earth Zinc Arsenides RE Zn 2– x As 2 · n ( RE As) ( RE = La–Nd, Sm; n = 3, 4, 5, 6)
journal, May 2013

  • Lin, Xinsong; Mar, Arthur
  • Inorganic Chemistry, Vol. 52, Issue 12
  • DOI: 10.1021/ic400933v

Phonon glass behavior beyond traditional cage structures: synthesis, crystal and electronic structure, and properties of KMg 4 Sb 3
journal, January 2018

  • Wang, Jian; Wang, Lin-Lin; Kovnir, Kirill
  • Journal of Materials Chemistry A, Vol. 6, Issue 11
  • DOI: 10.1039/C8TA00553B

A Rational Approach to Solid State Synthesis—The Zintl Concept
journal, May 1990


In situ studies of a platform for metastable inorganic crystal growth and materials discovery
journal, July 2014

  • Shoemaker, D. P.; Hu, Y. -J.; Chung, D. Y.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 30
  • DOI: 10.1073/pnas.1406211111

Clathrate XI K 58 Zn 122 Sb 207 : A New Branch on the Clathrate Family Tree
journal, October 2020

  • Cox, Tori; Gvozdetskyi, Volodymyr; Bertolami, Mark
  • Angewandte Chemie, Vol. 133, Issue 1
  • DOI: 10.1002/ange.202011120

Thermoelectric properties and electronic structure of Zintl compound BaZn2Sb2
journal, June 2007

  • Wang, Xiao-Jun; Tang, Mei-Bo; Zhao, Jing-Tai
  • Applied Physics Letters, Vol. 90, Issue 23
  • DOI: 10.1063/1.2746408

Ternary Rare-Earth Arsenides REZn 3 As 3 (RE = La–Nd, Sm) and RECd 3 As 3 (RE = La–Pr)
journal, November 2011

  • Stoyko, Stanislav S.; Mar, Arthur
  • Inorganic Chemistry, Vol. 50, Issue 21
  • DOI: 10.1021/ic201708x

Alte und neue Konzepte für thermoelektrische Materialien
journal, November 2009

  • Sootsman, Joseph R.; Chung, Duck Young; Kanatzidis, Mercouri G.
  • Angewandte Chemie, Vol. 121, Issue 46
  • DOI: 10.1002/ange.200900598

Ternary Zinc Antimonides Unlocked Using Hydride Synthesis
journal, June 2021