DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ Characterization of the Effect of Twin-Microstructure Interactions on {$$1 0 \bar{1} 2$$} Tension and {$$1 0\bar {1} 1$$} Contraction Twin Nucleation, Growth and Damage in Magnesium

Abstract

Through in situ electron backscatter diffraction (EBSD) experiments, this paper uncovers dominant damage mechanisms in traditional magnesium alloys exhibiting deformation twinning. The findings emphasize the level of deleterious strain incompatibility induced by twin interaction with other deformation modes and microstructural defects. A double fiber obtained by plane-strain extrusion as a starting texture of AM30 magnesium alloy offered the opportunity to track deformation by EBSD in neighboring grains where some undergo profuse {$$1 0\bar {1} 2$$} twinning and others do not. For a tensile loading applied along extrusion transverse (ET) direction, those experiencing profuse twinning reveal a major effect of grain boundaries on non-Schmid behavior affecting twin variant selection and growth. Similarly, a neighboring grain, with its $$\langle$$c$$\rangle$$-axis oriented nearly perpendicular to tensile loading, showed an abnormally early nucleation of {$$1 0\bar {1} 1$$} contraction twins (2% strain) while the same {$$1 0\bar {1} 1$$} twin mode triggering under $$\langle$$c$$\rangle$$-axis uniaxial compression have higher value of critical resolved shear stress exceeding the values for pyramidal $$\langle$$c + a$$\rangle$$ dislocations. The difference in nucleation behavior of contraction vs. compression {$$1 0\bar {1} 1$$} twins is attributed to the hydrostatic stresses that promote the required atomic shuffles at the core of twinning disconnections.

Authors:
 [1];  [1];  [1];  [2];  [2];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [3];  [4]
  1. Mississippi State Univ., Mississippi State, MS (United States)
  2. US Army Corps of Engineers, Vicksburg, MS (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Mississippi State Univ., Mississippi State, MS (United States); International University of Rabat (Morocco)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE; US Army Engineer Research and Development Center
OSTI Identifier:
1868220
Report Number(s):
LA-UR-20-26853
Journal ID: ISSN 2075-4701
Grant/Contract Number:  
89233218CNA000001; PE 0602784A; W56HZV-17-C-0095
Resource Type:
Accepted Manuscript
Journal Name:
Metals
Additional Journal Information:
Journal Volume: 10; Journal Issue: 11; Journal ID: ISSN 2075-4701
Publisher:
MDPI
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; EBSD; magnesium; deformation twinning; texture; damage initiation

Citation Formats

Russell, William D., Bratton, Nicholas R., Paudel, YubRaj, Moser, Robert D., McClelland, Zackery B., Barrett, Christopher D., Oppedal, Andrew L., Whittington, Wilburn R., Rhee, Hongjoo, Mujahid, Shiraz, Paliwal, Bhasker, Vogel, Sven C., and El Kadiri, Haitham. In Situ Characterization of the Effect of Twin-Microstructure Interactions on {$1 0 \bar{1} 2$} Tension and {$1 0\bar {1} 1$} Contraction Twin Nucleation, Growth and Damage in Magnesium. United States: N. p., 2020. Web. doi:10.3390/met10111403.
Russell, William D., Bratton, Nicholas R., Paudel, YubRaj, Moser, Robert D., McClelland, Zackery B., Barrett, Christopher D., Oppedal, Andrew L., Whittington, Wilburn R., Rhee, Hongjoo, Mujahid, Shiraz, Paliwal, Bhasker, Vogel, Sven C., & El Kadiri, Haitham. In Situ Characterization of the Effect of Twin-Microstructure Interactions on {$1 0 \bar{1} 2$} Tension and {$1 0\bar {1} 1$} Contraction Twin Nucleation, Growth and Damage in Magnesium. United States. https://doi.org/10.3390/met10111403
Russell, William D., Bratton, Nicholas R., Paudel, YubRaj, Moser, Robert D., McClelland, Zackery B., Barrett, Christopher D., Oppedal, Andrew L., Whittington, Wilburn R., Rhee, Hongjoo, Mujahid, Shiraz, Paliwal, Bhasker, Vogel, Sven C., and El Kadiri, Haitham. Thu . "In Situ Characterization of the Effect of Twin-Microstructure Interactions on {$1 0 \bar{1} 2$} Tension and {$1 0\bar {1} 1$} Contraction Twin Nucleation, Growth and Damage in Magnesium". United States. https://doi.org/10.3390/met10111403. https://www.osti.gov/servlets/purl/1868220.
@article{osti_1868220,
title = {In Situ Characterization of the Effect of Twin-Microstructure Interactions on {$1 0 \bar{1} 2$} Tension and {$1 0\bar {1} 1$} Contraction Twin Nucleation, Growth and Damage in Magnesium},
author = {Russell, William D. and Bratton, Nicholas R. and Paudel, YubRaj and Moser, Robert D. and McClelland, Zackery B. and Barrett, Christopher D. and Oppedal, Andrew L. and Whittington, Wilburn R. and Rhee, Hongjoo and Mujahid, Shiraz and Paliwal, Bhasker and Vogel, Sven C. and El Kadiri, Haitham},
abstractNote = {Through in situ electron backscatter diffraction (EBSD) experiments, this paper uncovers dominant damage mechanisms in traditional magnesium alloys exhibiting deformation twinning. The findings emphasize the level of deleterious strain incompatibility induced by twin interaction with other deformation modes and microstructural defects. A double fiber obtained by plane-strain extrusion as a starting texture of AM30 magnesium alloy offered the opportunity to track deformation by EBSD in neighboring grains where some undergo profuse {$1 0\bar {1} 2$} twinning and others do not. For a tensile loading applied along extrusion transverse (ET) direction, those experiencing profuse twinning reveal a major effect of grain boundaries on non-Schmid behavior affecting twin variant selection and growth. Similarly, a neighboring grain, with its $\langle$c$\rangle$-axis oriented nearly perpendicular to tensile loading, showed an abnormally early nucleation of {$1 0\bar {1} 1$} contraction twins (2% strain) while the same {$1 0\bar {1} 1$} twin mode triggering under $\langle$c$\rangle$-axis uniaxial compression have higher value of critical resolved shear stress exceeding the values for pyramidal $\langle$c + a$\rangle$ dislocations. The difference in nucleation behavior of contraction vs. compression {$1 0\bar {1} 1$} twins is attributed to the hydrostatic stresses that promote the required atomic shuffles at the core of twinning disconnections.},
doi = {10.3390/met10111403},
journal = {Metals},
number = 11,
volume = 10,
place = {United States},
year = {Thu Oct 22 00:00:00 EDT 2020},
month = {Thu Oct 22 00:00:00 EDT 2020}
}

Works referenced in this record:

Localized twin bands in sheet bending of a magnesium alloy
journal, September 2012


Effect of cyclic stresses on the microstructures of hexagonal close packed metals
journal, March 1969

  • Partridge, P. G.
  • Czechoslovak Journal of Physics, Vol. 19, Issue 3
  • DOI: 10.1007/BF01712869

Local microstructure and micromechanical stress evolution during deformation twinning in hexagonal polycrystals
journal, February 2020

  • Kumar, Mariyappan Arul; Beyerlein, Irene J.
  • Journal of Materials Research, Vol. 35, Issue 3
  • DOI: 10.1557/jmr.2020.14

Flow asymmetry and nucleation stresses of twinning and non-basal slip in magnesium
journal, May 2013


Mechanism of ortho kink-band formation in Compressed Zinc Monocrystals
journal, May 1954


Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys
journal, October 2010


Twinning and the origin of cleavage nuclei in α-iron
journal, September 1962


The role of strain accommodation during the variant selection of primary twins in magnesium
journal, March 2011


Crystal plasticity finite element modeling of discrete twin evolution in polycrystalline magnesium
journal, February 2017


Beyond initial twin nucleation in hcp metals: Micromechanical formulation for determining twin spacing during deformation
journal, July 2017


Double twinning
journal, November 1962


Breakdown of the Schmid law in homogeneous and heterogeneous nucleation events of slip and twinning in magnesium
journal, December 2012

  • Barrett, C. D.; El Kadiri, Haitham; Tschopp, M. A.
  • Journal of the Mechanics and Physics of Solids, Vol. 60, Issue 12
  • DOI: 10.1016/j.jmps.2012.06.015

A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects
journal, April 2010


Dislocation induced twin growth and formation of basal stacking faults in { 10 1 ¯ 2 } twins in pure Mg
journal, February 2019


Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium
journal, March 2012


Double twinning mechanisms in magnesium alloys via dissociation of lattice dislocations
journal, February 2012

  • Beyerlein, I. J.; Wang, J.; Barnett, M. R.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 468, Issue 2141
  • DOI: 10.1098/rspa.2011.0731

Incorporation of slip dislocations in mechanical twins—I
journal, October 1961


Twinning effects in a rod-textured AM30 Magnesium alloy
journal, February 2012


Twinning and the ductility of magnesium alloys
journal, August 2007


Weight Loss with Magnesium Alloys
journal, May 2010


Deformation mechanisms in Mg alloys and the challenge of extending room-temperature plasticity
journal, August 2009


Magnesium
journal, April 2001


Room temperature formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanisms
journal, August 2008


Texture analysis with the new HIPPO TOF diffractometer
journal, December 2003

  • Wenk, H. -R.; Lutterotti, L.; Vogel, S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 515, Issue 3
  • DOI: 10.1016/j.nima.2003.05.001

Deformation-twin-induced grain boundary failure
journal, January 2012


Twinning and double twinning upon compression of prismatic textures in an AM30 magnesium alloy
journal, May 2011


XCVII. Plastic deformation features on cleavage surfaces of metal crystals
journal, September 1952

  • Holden, J.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 43, Issue 344
  • DOI: 10.1080/14786440908521009

Variant selection during secondary twinning in Mg–3%Al
journal, June 2010


Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation
journal, December 2009


The crystallographic characteristics of fracture in magnesium single crystals
journal, December 1957


The role of deformation twinning in the fracture behavior and mechanism of basal textured magnesium alloys
journal, April 2014


Non-basal slip and twin accommodation in zinc crystals
journal, August 1961


Determination of pole figure coverage for texture measurements with neutron time-of-flight diffractometers
journal, June 2018


A six-axis robotic sample changer for high-throughput neutron powder diffraction and texture measurements
journal, November 2014

  • Losko, Adrian S.; Vogel, Sven C.; Reiche, H. Matthias
  • Journal of Applied Crystallography, Vol. 47, Issue 6
  • DOI: 10.1107/S1600576714021797

Profuse slip transmission across twin boundaries in magnesium
journal, February 2017


Twin–twin interactions in magnesium
journal, September 2014


The roles of grain boundary dislocations and disclinations in the nucleation of {102} twinning
journal, January 2014


Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy
journal, March 2012


Automated analysis of twins in hexagonal close-packed metals using molecular dynamics
journal, May 2012


Twinning and the ductility of magnesium alloys
journal, August 2007


Three-dimensional effects of twinning in magnesium alloys
journal, April 2015


Deformation twinning
journal, January 1995


Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature
journal, July 2005


Twin-slip interaction in f.c.c. crystals
journal, June 1977


Impact of deformation faceting on <mml:math altimg="si24.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mspace width="0.12em"/><mml:mn>0</mml:mn><mml:mspace width="0.12em"/><mml:mover accent="true"><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mspace width="0.12em"/><mml:mn>2</mml:mn><mml:mo stretchy="false">}</mml:mo><mml:mtext>,</mml:mtext><mml:mo stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mspace width="0.12em"/><mml:mn>0</mml:mn><mml:mspace width="0.12em"/><mml:mover accent="true"><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mspace width="0.12em"/><mml:mn>1</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:math> and <mml:math altimg="si25.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mspace width="0.12em"/><mml:mn>0</mml:mn><mml:mspace width="0.12em"/><mml:mover accent="true"><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mspace width="0.12em"/><mml:mn>3</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:math> embryonic twin nucleation in hexagonal close-packed metals
journal, May 2014


Characterization and modeling of { 10 1 ¯ 2 } twin banding in magnesium
journal, January 2020


Why are { 10 1 ¯ 2 } twins profuse in magnesium?
journal, February 2015


½<111> screw dislocations and the nucleation of {112}<111> twins in the b.c.c. lattice
journal, September 1963


Formation of deformation twins in f.c.c. crystals
journal, October 1973


Dislocation slip or deformation twinning: confining pressure makes a difference
journal, December 2004


Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy
journal, January 2008


EBSD analysis of deformation modes in Mg–3Al–1Zn
journal, November 2006


A dislocation-based constitutive law for pure Zr including temperature effects
journal, May 2008


Rietveld texture analysis from TOF neutron diffraction data
journal, September 2010

  • Wenk, H. -R.; Lutterotti, L.; Vogel, S. C.
  • Powder Diffraction, Vol. 25, Issue 3
  • DOI: 10.1154/1.3479004

The candidacy of shuffle and shear during compound twinning in hexagonal close-packed structures
journal, December 2013


Twin-slip, twin-twin and slip-twin interactions in Co-8 wt.% Fe alloy single crystals
journal, February 1973


Twin-slip and twin-twin interactions in Mo-35 at. % Re alloy
journal, April 1971