DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Room-temperature large magnetoelectricity in a transition metal doped ferroelectric perovskite

Abstract

There is increasing interest in novel magnetoelectric (ME) materials that exhibit robust ME coupling at room-temperature (RT) for advanced memory, energy, spintronics, and other multifunctional device applications, by making use of the ability to control polarization with a magnetic field and/or magnetization via an electric field. Obtaining ME materials with strong ME coupling, understanding the origin, and manipulating its processing along with composition to realize large ME coefficients at RT constitute an important step in multiferroic research. To address this, we have investigated the multiferroic and ME properties of Ni-doped Pb(Zr0.20Ti0.80)O3 (PZT). We find that the ferroelectric (TC ~ 700 K) and weak ferromagnetic (~ 602 K) phase transitions of Ni-doped PZT are well above RT, leading to a strong ME coupling coefficient (αE,31) of 11.7 mVcm-1Oe-1 (Hac = 1 Oe and f = 1 kHz). While X-ray diffraction suggests a single-phase material, high resolution transmission electron microscopy reveals regions with and without Ni present; thus magnetoelectric coupling between two phases is possible. First-principle calculations suggest the (NiPb)× defect is likely to be responsible for the experimental observed magnetism and ME coupling in Ni-doped PZT. Furthermore, we demonstrate that Ni-doped PZT exhibits low loss tangent, low leakage current, large saturationmore » polarization and weak ferromagnetism. Ultimately, our work demonstrates that Ni-doped PZT is a cost-effective RT multiferroic with strong ME coupling.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4];  [5];  [6]; ORCiD logo [7];  [5]; ORCiD logo [1]; ORCiD logo [8]; ORCiD logo [2];  [9];  [10]
  1. Pennsylvania State Univ., University Park, PA (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
  3. Westlake Univ., Hangzhou (China)
  4. Carnegie Inst. of Science, Washington, DC (United States); Univ. of Rajshahi (Bangladesh)
  5. Oakland Univ., Rochester, MI (United States)
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
  7. National Institute of Technology, Rourkela (India)
  8. Univ. of Puerto Rico, San Juan, PR (United States)
  9. Univ. of St. Andrews, Scotland (United Kingdom)
  10. CSIR- National Physical Laboratory, New Delhi (India)
Publication Date:
Research Org.:
Louisiana State Univ., Baton Rouge, LA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; National Science Foundation (NSF); US Air Force Office of Scientific Research (AFOSR); Engineering and Physical Sciences Research Council (EPSRC); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1867222
Alternate Identifier(s):
OSTI ID: 1890278
Grant/Contract Number:  
SC0002136; FG02-08ER46531; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B
Additional Journal Information:
Journal Volume: 104; Journal Issue: 17; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; dielectric properties; ferroelectricity; magnetic coupling; magnetic order; magnetoelectric effect; ferroelectrics; multiferroics; perovskites; density functional calculations; magnetization measurements; Raman spectroscopy

Citation Formats

Kumari, Shalini, Pradhan, Dhiren K., Liu, Shi, Rahaman, M. M., Zhou, Peng, Roccapriore, Kevin M., Pradhan, Dillip K., Srinivasan, Gopalan, Li, Qi, Katiyar, Ram S., Rack, Philip D., Scott, J. F., and Kumar, Ashok. Room-temperature large magnetoelectricity in a transition metal doped ferroelectric perovskite. United States: N. p., 2021. Web. doi:10.1103/physrevb.104.174415.
Kumari, Shalini, Pradhan, Dhiren K., Liu, Shi, Rahaman, M. M., Zhou, Peng, Roccapriore, Kevin M., Pradhan, Dillip K., Srinivasan, Gopalan, Li, Qi, Katiyar, Ram S., Rack, Philip D., Scott, J. F., & Kumar, Ashok. Room-temperature large magnetoelectricity in a transition metal doped ferroelectric perovskite. United States. https://doi.org/10.1103/physrevb.104.174415
Kumari, Shalini, Pradhan, Dhiren K., Liu, Shi, Rahaman, M. M., Zhou, Peng, Roccapriore, Kevin M., Pradhan, Dillip K., Srinivasan, Gopalan, Li, Qi, Katiyar, Ram S., Rack, Philip D., Scott, J. F., and Kumar, Ashok. Mon . "Room-temperature large magnetoelectricity in a transition metal doped ferroelectric perovskite". United States. https://doi.org/10.1103/physrevb.104.174415. https://www.osti.gov/servlets/purl/1867222.
@article{osti_1867222,
title = {Room-temperature large magnetoelectricity in a transition metal doped ferroelectric perovskite},
author = {Kumari, Shalini and Pradhan, Dhiren K. and Liu, Shi and Rahaman, M. M. and Zhou, Peng and Roccapriore, Kevin M. and Pradhan, Dillip K. and Srinivasan, Gopalan and Li, Qi and Katiyar, Ram S. and Rack, Philip D. and Scott, J. F. and Kumar, Ashok},
abstractNote = {There is increasing interest in novel magnetoelectric (ME) materials that exhibit robust ME coupling at room-temperature (RT) for advanced memory, energy, spintronics, and other multifunctional device applications, by making use of the ability to control polarization with a magnetic field and/or magnetization via an electric field. Obtaining ME materials with strong ME coupling, understanding the origin, and manipulating its processing along with composition to realize large ME coefficients at RT constitute an important step in multiferroic research. To address this, we have investigated the multiferroic and ME properties of Ni-doped Pb(Zr0.20Ti0.80)O3 (PZT). We find that the ferroelectric (TC ~ 700 K) and weak ferromagnetic (~ 602 K) phase transitions of Ni-doped PZT are well above RT, leading to a strong ME coupling coefficient (αE,31) of 11.7 mVcm-1Oe-1 (Hac = 1 Oe and f = 1 kHz). While X-ray diffraction suggests a single-phase material, high resolution transmission electron microscopy reveals regions with and without Ni present; thus magnetoelectric coupling between two phases is possible. First-principle calculations suggest the (NiPb)× defect is likely to be responsible for the experimental observed magnetism and ME coupling in Ni-doped PZT. Furthermore, we demonstrate that Ni-doped PZT exhibits low loss tangent, low leakage current, large saturation polarization and weak ferromagnetism. Ultimately, our work demonstrates that Ni-doped PZT is a cost-effective RT multiferroic with strong ME coupling.},
doi = {10.1103/physrevb.104.174415},
journal = {Physical Review. B},
number = 17,
volume = 104,
place = {United States},
year = {Mon Nov 15 00:00:00 EST 2021},
month = {Mon Nov 15 00:00:00 EST 2021}
}

Works referenced in this record:

Magnetoelectric quasi-(0-3) nanocomposite heterostructures
journal, March 2015

  • Li, Yanxi; Wang, Zhongchang; Yao, Jianjun
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7680

Donor impurity band exchange in dilute ferromagnetic oxides
journal, January 2005

  • Coey, J. M. D.; Venkatesan, M.; Fitzgerald, C. B.
  • Nature Materials, Vol. 4, Issue 2
  • DOI: 10.1038/nmat1310

Fano resonance of Li-doped KTa1−xNbxO3 single crystals studied by Raman scattering
journal, April 2016

  • Rahaman, M. M.; Imai, T.; Sakamoto, T.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep23898

Scalable energy-efficient magnetoelectric spin–orbit logic
journal, December 2018


Effect of thickness on dielectric, ferroelectric, and optical properties of Ni substituted Pb(Zr0.2Ti0.8)O3 thin films
journal, November 2015

  • Kumari, Shalini; Ortega, Nora; Pradhan, Dhiren K.
  • Journal of Applied Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.4935481

Dielectric anomalies due to grain boundary conduction in chemically substituted BiFeO 3
journal, March 2015

  • Kumari, Shalini; Ortega, N.; Kumar, A.
  • Journal of Applied Physics, Vol. 117, Issue 11
  • DOI: 10.1063/1.4915110

Multiferroic magnetoelectric composite nanostructures
journal, April 2010


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films
journal, May 2010

  • Martin, L. W.; Chu, Y. -H.; Ramesh, R.
  • Materials Science and Engineering: R: Reports, Vol. 68, Issue 4-6
  • DOI: 10.1016/j.mser.2010.03.001

Recent advances in magnetic structure determination by neutron powder diffraction
journal, October 1993


Why Are There so Few Magnetic Ferroelectrics?
journal, July 2000

  • Hill, Nicola A.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 29
  • DOI: 10.1021/jp000114x

Curie temperature of nickel
journal, March 2011


Magnetoelectric Composites: Applications, Coupling Mechanisms, and Future Directions
journal, October 2020

  • Pradhan, Dhiren K.; Kumari, Shalini; Rack, Philip D.
  • Nanomaterials, Vol. 10, Issue 10
  • DOI: 10.3390/nano10102072

Magnetoelectric Devices for Spintronics
journal, July 2014


Theoretical Prediction of Magnetic Properties of Ba(Ti1-xMx)O3 (M=Sc,V,Cr,Mn,Fe,Co,Ni,Cu)
journal, December 2001

  • Nakayama, Hiroyuki; Katayama-Yoshida, Hiroshi
  • Japanese Journal of Applied Physics, Vol. 40, Issue Part 2, No. 12B
  • DOI: 10.1143/JJAP.40.L1355

β phase and γ β metal-insulator transition in multiferroic Bi Fe O 3
journal, January 2008


Physics and Applications of Bismuth Ferrite
journal, June 2009


Temperature evolution of the relaxor dynamics in Pb ( Zn 1 3 Nb 2 3 ) O 3 : A critical Raman analysis
journal, November 2005


Studies on structural, dielectric, and transport properties of Ni 0.65 Zn 0.35 Fe 2 O 4
journal, June 2014

  • Pradhan, Dhiren K.; Misra, Pankaj; Puli, Venkata S.
  • Journal of Applied Physics, Vol. 115, Issue 24
  • DOI: 10.1063/1.4885420

The intrinsic central peak at the structural phase transitions in KNbO 3
journal, December 1988

  • Fontana, M. D.; Ridah, A.; Kugel, G. E.
  • Journal of Physics C: Solid State Physics, Vol. 21, Issue 34
  • DOI: 10.1088/0022-3719/21/34/019

Magnetic and magnetoelectric studies in pure and cation doped
journal, May 2009


Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides
journal, November 2001


Multiferroic memories
journal, March 2007


The Nature of Magnetoelectric Coupling in Pb(Zr,Ti)O 3 -Pb(Fe,Ta)O 3
journal, September 2015

  • Evans, Donald M.; Alexe, Marin; Schilling, Alina
  • Advanced Materials, Vol. 27, Issue 39
  • DOI: 10.1002/adma.201501749

Effect of dopants on the microstructure and lattice parameters of lead zirconate-titanate ceramics
journal, June 1987

  • Roy-Chowdhury, Phanibhusan; Deshpande, Subhash B.
  • Journal of Materials Science, Vol. 22, Issue 6
  • DOI: 10.1007/BF01132962

Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite
journal, April 2016

  • Jartych, Elżbieta; Pikula, Tomasz; Kowal, Karol
  • Nanoscale Research Letters, Vol. 11, Issue 1
  • DOI: 10.1186/s11671-016-1436-3

Multiferroic magnetoelectric composites: Historical perspective, status, and future directions
journal, February 2008

  • Nan, Ce-Wen; Bichurin, M. I.; Dong, Shuxiang
  • Journal of Applied Physics, Vol. 103, Issue 3
  • DOI: 10.1063/1.2836410

Revival of the magnetoelectric effect
journal, April 2005


Studies of Phase Transitions and Magnetoelectric Coupling in PFN-CZFO Multiferroic Composites
journal, January 2016

  • Pradhan, Dhiren K.; Puli, Venkata S.; Kumari, Shalini
  • The Journal of Physical Chemistry C, Vol. 120, Issue 3
  • DOI: 10.1021/acs.jpcc.5b10422

Octahedral tilting, monoclinic phase and the phase diagram of PZT
journal, September 2011


Ferroelectric phase transition of Li-doped KTa1-Nb O3 single crystals with weak random fields: Inelastic light scattering study
journal, February 2018


Pseudopotentials for high-throughput DFT calculations
journal, January 2014


Linear response approach to the calculation of the effective interaction parameters in the LDA + U method
journal, January 2005


Exploring phase transitions and magnetoelectric coupling of epitaxial asymmetric multilayer heterostructures
journal, January 2020

  • Pradhan, Dhiren K.; Kumari, Shalini; Puli, Venkata S.
  • Journal of Materials Chemistry C, Vol. 8, Issue 35
  • DOI: 10.1039/D0TC02924F

Towards a magnetoelectric memory
journal, June 2008

  • Bibes, Manuel; Barthélémy, Agnès
  • Nature Materials, Vol. 7, Issue 6
  • DOI: 10.1038/nmat2189

Synthesis and characterisation of doped 6H-BaTiO3 ceramics
journal, January 2004


A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity
journal, September 2016

  • Fernández-Posada, Carmen M.; Castro, Alicia; Kiat, Jean-Michel
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12772

Ferroelectric and photovoltaic properties of transition metal doped Pb(Zr 0.14 Ti 0.56 Ni 0.30 )O 3-δ thin films
journal, March 2014

  • Kumari, Shalini; Ortega, Nora; Kumar, Ashok
  • AIP Advances, Vol. 4, Issue 3
  • DOI: 10.1063/1.4868380

Studies on magnetoelectric coupling in PFN-NZFO composite at room temperature
journal, May 2014

  • Pradhan, Dhiren K.; Sahoo, Satyaprakash; Barik, Sujit K.
  • Journal of Applied Physics, Vol. 115, Issue 19
  • DOI: 10.1063/1.4875661

Room-Temperature Nonvolatile Memory Based on a Single-Phase Multiferroic Hexaferrite
journal, December 2017

  • Zhai, Kun; Shang, Da-Shan; Chai, Yi-Sheng
  • Advanced Functional Materials, Vol. 28, Issue 9
  • DOI: 10.1002/adfm.201705771

Band theory and Mott insulators: Hubbard U instead of Stoner I
journal, July 1991

  • Anisimov, Vladimir I.; Zaanen, Jan; Andersen, Ole K.
  • Physical Review B, Vol. 44, Issue 3, p. 943-954
  • DOI: 10.1103/PhysRevB.44.943

Raman scattering study of the PbZr 1 x Ti x O 3 system: Rhombohedral-monoclinic-tetragonal phase transitions
journal, October 2002


Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films
journal, February 2011


The chips are down for Moore’s law
journal, February 2016


The equation of state of PbTiO 3 up to 37 GPa: a synchrotron x-ray powder diffraction study
journal, October 2002


A statistical model approximation for perovskite solid-solutions: A Raman study of lead-zirconate-titanate single crystal
journal, May 2013

  • Frantti, J.; Fujioka, Y.; Puretzky, A.
  • Journal of Applied Physics, Vol. 113, Issue 17
  • DOI: 10.1063/1.4798391

Leakage Current Properties of Cation-Substituted BiFeO 3 Ceramics
journal, September 2010

  • Abe, Kazutomo; Sakai, Noriyoshi; Takahashi, Junichi
  • Japanese Journal of Applied Physics, Vol. 49, Issue 9
  • DOI: 10.1143/JJAP.49.09MB01

Multiferroics: Past, present, and future
journal, October 2010

  • Spaldin, Nicola A.; Cheong, Sang-Wook; Ramesh, Ramamoorthy
  • Physics Today, Vol. 63, Issue 10
  • DOI: 10.1063/1.3502547

Palladium-based ferroelectrics and multiferroics: Theory and experiment
journal, June 2017


Multiferroic and magnetoelectric materials
journal, August 2006

  • Eerenstein, W.; Mathur, N. D.; Scott, J. F.
  • Nature, Vol. 442, Issue 7104
  • DOI: 10.1038/nature05023