DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interfacial Reactivity of Silicon Electrodes: Impact of Electrolyte Solvent and Presence of Conductive Carbon

Abstract

Silicon (Si) is a promising high-capacity material for lithium-ion batteries; however, its limited reversibility hinders commercial adoption. Approaches such as particle and crystallite size reduction, introduction of conductive carbon, and use of different electrolyte solvents have been explored to overcome these electrochemical limitations. Herein, operando isothermal microcalorimetry (IMC) is used to probe the influence of silicon particle size, electrode composition, and electrolyte additives fluoroethylene carbonate and vinylene carbonate on the heat flow during silicon lithiation. In this work, the IMC data are complemented by X-ray photoelectron and Raman spectroscopies to elucidate differences in solid electrolyte interphase (SEI) composition. Nanosized (~50 nm, n-Si) and micrometer-sized (~4 μm, μ-Si) silicon electrodes are formulated with and without amorphous carbon and electrochemically lithiated in ethylene carbonate (EC), fluoroethylene carbonate (FEC), or vinylene carbonate (VC) based electrolytes. Notably, n-Si electrodes generate 53–61% more normalized heat relative to their μ-Si counterparts, consistent with increased surface area and electrode/electrolyte reactivity. Introduction of amorphous carbon significantly alters the heat flow profile where multiple exothermic peaks and increased normalized heat dissipation are observed for all electrolyte types. Notably, the VC-containing electrolyte demonstrates the greatest normalized heat dissipation of the electrode compositions tested showing as much as a 50% increasemore » compared to the EC or FEC counterparts. The results are relevant to the understanding of silicon negative electrode function in the presence of electrolyte additives and provide insight relative to silicon containing cell reactivity and safety.« less

Authors:
 [1];  [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [2];  [2];  [1]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]
  1. Stony Brook Univ., NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  3. Stony Brook Univ., NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Northwestern Univ., Evanston, IL (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2M/t); Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Sponsoring Org.:
Mercedes-Benz Research and Development North America, Inc.; US Army Research Laboratory (USARL); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1865649
Alternate Identifier(s):
OSTI ID: 1963195
Report Number(s):
BNL-224162-2023-JAAM
Journal ID: ISSN 1944-8244
Grant/Contract Number:  
SC0021314; SC0012673; SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 14; Journal Issue: 18; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; isothermal microcalorimetry; silicon; particle size; carbon; heat dissipation; battery

Citation Formats

Vila, Mallory N., Bernardez, Edelmy Marin, Li, Wenzao, Stackhouse, Chavis A., Kern, Christopher J., Head, Ashley R., Tong, Xiao, Yan, Shan, Wang, Lei, Bock, David C., Takeuchi, Kenneth J., Housel, Lisa M., Marschilok, Amy C., and Takeuchi, Esther S. Interfacial Reactivity of Silicon Electrodes: Impact of Electrolyte Solvent and Presence of Conductive Carbon. United States: N. p., 2022. Web. doi:10.1021/acsami.1c22044.
Vila, Mallory N., Bernardez, Edelmy Marin, Li, Wenzao, Stackhouse, Chavis A., Kern, Christopher J., Head, Ashley R., Tong, Xiao, Yan, Shan, Wang, Lei, Bock, David C., Takeuchi, Kenneth J., Housel, Lisa M., Marschilok, Amy C., & Takeuchi, Esther S. Interfacial Reactivity of Silicon Electrodes: Impact of Electrolyte Solvent and Presence of Conductive Carbon. United States. https://doi.org/10.1021/acsami.1c22044
Vila, Mallory N., Bernardez, Edelmy Marin, Li, Wenzao, Stackhouse, Chavis A., Kern, Christopher J., Head, Ashley R., Tong, Xiao, Yan, Shan, Wang, Lei, Bock, David C., Takeuchi, Kenneth J., Housel, Lisa M., Marschilok, Amy C., and Takeuchi, Esther S. Thu . "Interfacial Reactivity of Silicon Electrodes: Impact of Electrolyte Solvent and Presence of Conductive Carbon". United States. https://doi.org/10.1021/acsami.1c22044. https://www.osti.gov/servlets/purl/1865649.
@article{osti_1865649,
title = {Interfacial Reactivity of Silicon Electrodes: Impact of Electrolyte Solvent and Presence of Conductive Carbon},
author = {Vila, Mallory N. and Bernardez, Edelmy Marin and Li, Wenzao and Stackhouse, Chavis A. and Kern, Christopher J. and Head, Ashley R. and Tong, Xiao and Yan, Shan and Wang, Lei and Bock, David C. and Takeuchi, Kenneth J. and Housel, Lisa M. and Marschilok, Amy C. and Takeuchi, Esther S.},
abstractNote = {Silicon (Si) is a promising high-capacity material for lithium-ion batteries; however, its limited reversibility hinders commercial adoption. Approaches such as particle and crystallite size reduction, introduction of conductive carbon, and use of different electrolyte solvents have been explored to overcome these electrochemical limitations. Herein, operando isothermal microcalorimetry (IMC) is used to probe the influence of silicon particle size, electrode composition, and electrolyte additives fluoroethylene carbonate and vinylene carbonate on the heat flow during silicon lithiation. In this work, the IMC data are complemented by X-ray photoelectron and Raman spectroscopies to elucidate differences in solid electrolyte interphase (SEI) composition. Nanosized (~50 nm, n-Si) and micrometer-sized (~4 μm, μ-Si) silicon electrodes are formulated with and without amorphous carbon and electrochemically lithiated in ethylene carbonate (EC), fluoroethylene carbonate (FEC), or vinylene carbonate (VC) based electrolytes. Notably, n-Si electrodes generate 53–61% more normalized heat relative to their μ-Si counterparts, consistent with increased surface area and electrode/electrolyte reactivity. Introduction of amorphous carbon significantly alters the heat flow profile where multiple exothermic peaks and increased normalized heat dissipation are observed for all electrolyte types. Notably, the VC-containing electrolyte demonstrates the greatest normalized heat dissipation of the electrode compositions tested showing as much as a 50% increase compared to the EC or FEC counterparts. The results are relevant to the understanding of silicon negative electrode function in the presence of electrolyte additives and provide insight relative to silicon containing cell reactivity and safety.},
doi = {10.1021/acsami.1c22044},
journal = {ACS Applied Materials and Interfaces},
number = 18,
volume = 14,
place = {United States},
year = {Thu Mar 31 00:00:00 EDT 2022},
month = {Thu Mar 31 00:00:00 EDT 2022}
}

Works referenced in this record:

The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries
journal, June 2005

  • Lee, Hsiang-Hwan; Wang, Yung-Yun; Wan, Chi-Chao
  • Journal of Applied Electrochemistry, Vol. 35, Issue 6
  • DOI: 10.1007/s10800-005-2700-x

Isothermal Calorimetry Evaluation of Metallurgical Silicon as a Negative Electrode Material for Li-Ion Batteries
journal, March 2021

  • Chevrier, V. L.; Yan, Zilai; Glazier, Stephen L.
  • Journal of The Electrochemical Society, Vol. 168, Issue 3
  • DOI: 10.1149/1945-7111/abe16a

Identification of the Solid Electrolyte Interface on the Si/C Composite Anode with FEC as the Additive
journal, February 2019

  • Li, Qi; Liu, Xiangsi; Han, Xiang
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 15
  • DOI: 10.1021/acsami.8b22221

Raman scattering from Ge nanostructures grown on Si substrates: Power and limitations
journal, March 2000

  • Kolobov, A. V.
  • Journal of Applied Physics, Vol. 87, Issue 6
  • DOI: 10.1063/1.372279

A High-Efficiency Surface-Enhanced Raman Scattering Substrate Based on Silicon Nanowires Array Decorated with Silver Nanoparticles
journal, January 2010

  • Zhang, Ming-Liang; Fan, Xia; Zhou, Hong-Wei
  • The Journal of Physical Chemistry C, Vol. 114, Issue 5
  • DOI: 10.1021/jp902775t

Study on Solid-Electrolyte-Interphase of Si and C-Coated Si Electrodes in Lithium Cells
journal, January 2009

  • Yen, Yu-Chan; Chao, Sung-Chieh; Wu, Hung-Chun
  • Journal of The Electrochemical Society, Vol. 156, Issue 2
  • DOI: 10.1149/1.3032230

Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy
journal, February 2012

  • Philippe, Bertrand; Dedryvère, Rémi; Allouche, Joachim
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm2034195

Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications
journal, January 2018


Zn/MnO2 battery chemistry with dissolution-deposition mechanism
journal, June 2020


Experimental determination of the inelastic mean free path of electrons in solids
journal, December 1989


Overcoming the fundamental challenge of PVDF binder use with silicon anodes with a super-molecular nano-layer
journal, January 2021

  • Huang, Weibo; Wang, Wei; Wang, Yan
  • Journal of Materials Chemistry A, Vol. 9, Issue 3
  • DOI: 10.1039/D0TA10301B

Effect of Lithiation Potential and Cycling on Chemical and Morphological Evolution of Si Thin Film Electrode Studied by ToF-SIMS
journal, July 2014

  • Pereira-Nabais, Catarina; Światowska, Jolanta; Rosso, Michel
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 15
  • DOI: 10.1021/am502913q

Isothermal microcalorimetry as a tool to study solid–electrolyte interphase formation in lithium-ion cells
journal, January 2016

  • Hall, David S.; Glazier, Stephen L.; Dahn, J. R.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 16
  • DOI: 10.1039/C6CP01309K

Insights into Reactivity of Silicon Negative Electrodes: Analysis Using Isothermal Microcalorimetry
journal, September 2019

  • Housel, Lisa M.; Li, Wenzao; Quilty, Calvin D.
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 41
  • DOI: 10.1021/acsami.9b10772

Evaluating Si-Based Materials for Li-Ion Batteries in Commercially Relevant Negative Electrodes
journal, January 2014

  • Chevrier, Vincent L.; Liu, Li; Le, Dinh Ba
  • Journal of The Electrochemical Society, Vol. 161, Issue 5
  • DOI: 10.1149/2.066405jes

GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations
journal, May 2003


Enhanced reversible lithium storage in a nanosize silicon/graphene composite
journal, February 2010

  • Chou, Shu-Lei; Wang, Jia-Zhao; Choucair, Mohammad
  • Electrochemistry Communications, Vol. 12, Issue 2, p. 303-306
  • DOI: 10.1016/j.elecom.2009.12.024

Effect of Temperature and FEC on Silicon Anode Heat Generation Measured by Isothermal Microcalorimetry
journal, November 2021

  • Arnot, David J.; Allcorn, Eric; Harrison, Katharine L.
  • Journal of The Electrochemical Society, Vol. 168, Issue 11
  • DOI: 10.1149/1945-7111/ac315c

Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy
journal, July 2018

  • Jin, Yanting; Kneusels, Nis-Julian H.; Marbella, Lauren E.
  • Journal of the American Chemical Society, Vol. 140, Issue 31
  • DOI: 10.1021/jacs.8b03408

Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range
journal, February 2011

  • Tanuma, S.; Powell, C. J.; Penn, D. R.
  • Surface and Interface Analysis, Vol. 43, Issue 3
  • DOI: 10.1002/sia.3522

Recent advances in porous graphene materials for supercapacitor applications
journal, January 2014

  • Zhang, Xiong; Zhang, Haitao; Li, Chen
  • RSC Adv., Vol. 4, Issue 86
  • DOI: 10.1039/C4RA07869A

Analysis of Vinylene Carbonate (VC) as Additive in Graphite/LiNi 0.5 Mn 1.5 O 4 Cells
journal, January 2017

  • Pritzl, Daniel; Solchenbach, Sophie; Wetjen, Morten
  • Journal of The Electrochemical Society, Vol. 164, Issue 12
  • DOI: 10.1149/2.1441712jes

Role of 1,3-Propane Sultone and Vinylene Carbonate in Solid Electrolyte Interface Formation and Gas Generation
journal, May 2015

  • Zhang, Bo; Metzger, Michael; Solchenbach, Sophie
  • The Journal of Physical Chemistry C, Vol. 119, Issue 21
  • DOI: 10.1021/acs.jpcc.5b00072

Structure of pyrrhotite 5 C (Fe 9 S 10 )
journal, May 2010

  • Elliot, Alexander Dean
  • Acta Crystallographica Section B Structural Science, Vol. 66, Issue 3
  • DOI: 10.1107/S0108768110011845

An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries
journal, January 2009


Amorphous Carbon-Coated Silicon Nanocomposites:  A Low-Temperature Synthesis via Spray Pyrolysis and Their Application as High-Capacity Anodes for Lithium-Ion Batteries
journal, July 2007

  • Ng, See How; Wang, Jiazhao; Wexler, David
  • The Journal of Physical Chemistry C, Vol. 111, Issue 29
  • DOI: 10.1021/jp072778d

Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive
journal, January 2005


Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries
journal, January 2016

  • Jung, Roland; Metzger, Michael; Haering, Dominik
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.0951608jes

The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes
journal, August 2015


Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell
journal, August 2017


Interplay between solid-electrolyte interphase and (in)active LixSi in silicon anode
journal, December 2021


The Impact of Electrolyte Additives Determined Using Isothermal Microcalorimetry
journal, January 2013

  • Downie, L. E.; Nelson, K. J.; Petibon, R.
  • ECS Electrochemistry Letters, Vol. 2, Issue 10
  • DOI: 10.1149/2.010310eel

Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation
journal, September 2016


SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders
journal, January 2015

  • Jaumann, Tony; Balach, Juan; Klose, Markus
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 38
  • DOI: 10.1039/C5CP03672K

Optimum Particle Size in Silicon Electrodes Dictated by Chemomechanical Deformation of the SEI
journal, February 2021

  • Jin, Mok Yun; Guo, Kai; Xiao, Xingcheng
  • Advanced Functional Materials, Vol. 31, Issue 19
  • DOI: 10.1002/adfm.202010640

Amorphous Columnar Silicon Anodes for Advanced High Voltage Lithium Ion Full Cells: Dominant Factors Governing Cycling Performance
journal, January 2013

  • Markevich, E.; Fridman, K.; Sharabi, R.
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.085310jes

Nonpassivated Silicon Anode Surface
journal, May 2020

  • Yin, Yanli; Arca, Elisabetta; Wang, Luning
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 23
  • DOI: 10.1021/acsami.0c03799

Electrochemical characteristics of amorphous silicon thin film electrode with fluoroethylene carbonate additive
journal, April 2014


Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives
journal, January 2017


Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries
journal, August 2012

  • Chockla, Aaron M.; Bogart, Timothy D.; Hessel, Colin M.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 34
  • DOI: 10.1021/jp305371v

In Situ Mechanistic Elucidation of Superior Si‐C‐Graphite Li‐Ion Battery Anode Formation with Thermal Safety Aspects
journal, November 2019

  • Parekh, Mihit H.; Sediako, Anton D.; Naseri, Ali
  • Advanced Energy Materials, Vol. 10, Issue 2
  • DOI: 10.1002/aenm.201902799

In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures
journal, August 2016

  • Shen, Chenfei; Ge, Mingyuan; Luo, Langli
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep31334

Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries
journal, January 2015

  • Nie, Mengyun; Demeaux, Julien; Young, Benjamin T.
  • Journal of The Electrochemical Society, Vol. 162, Issue 13
  • DOI: 10.1149/2.0021513jes

Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes
journal, December 2011

  • Etacheri, Vinodkumar; Haik, Ortal; Goffer, Yossi
  • Langmuir, Vol. 28, Issue 1
  • DOI: 10.1021/la203712s

The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries
journal, January 2009

  • El Ouatani, L.; Dedryvère, R.; Siret, C.
  • Journal of The Electrochemical Society, Vol. 156, Issue 2
  • DOI: 10.1149/1.3029674

What Makes Fluoroethylene Carbonate Different?
journal, June 2015

  • Shkrob, Ilya A.; Wishart, James F.; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 27
  • DOI: 10.1021/acs.jpcc.5b03591

Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes
journal, January 2017


The Effect of Carbon Dioxide on the Cycle Life and Electrolyte Stability of Li-Ion Full Cells Containing Silicon Alloy
journal, January 2017

  • Krause, L. J.; Chevrier, V. L.; Jensen, L. D.
  • Journal of The Electrochemical Society, Vol. 164, Issue 12
  • DOI: 10.1149/2.1121712jes

Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products
journal, December 2015


Spectroscopic and structural properties of YbF3-doped fluorophosphate glasses
journal, May 2005


Effect of particle size distribution on the electrochemical performance of micro-sized silicon-based negative materials
journal, January 2018

  • Wu, Shuaijin; Yu, Bing; Wu, Zhaohui
  • RSC Advances, Vol. 8, Issue 16
  • DOI: 10.1039/C8RA00539G

Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

Complex Lithiation Mechanism of Siloxene and Germanane: Two Promising Battery Electrode Materials
journal, January 2021

  • Loaiza, L. C.; Dupré, N.; Davoisne, C.
  • Journal of The Electrochemical Society, Vol. 168, Issue 1
  • DOI: 10.1149/1945-7111/abd44a

Surface Area Increase of Silicon Alloys in Li-Ion Full Cells Measured by Isothermal Heat Flow Calorimetry
journal, January 2017

  • Krause, L. J.; Brandt, T.; Chevrier, V. L.
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.0501712jes

High‐Performance Silicon Anodes Enabled By Nonflammable Localized High‐Concentration Electrolytes
journal, July 2019

  • Jia, Haiping; Zou, Lianfeng; Gao, Peiyuan
  • Advanced Energy Materials, Vol. 9, Issue 31
  • DOI: 10.1002/aenm.201900784

Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes
journal, November 2011