DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emissive InAs/InP/ZnSe Quantum Dots

Abstract

The development of bright, near-infrared-emissive quantum dots (QDs) is a necessary requirement for the realization of important new classes of technology. Specifically, there exist significant needs for brighter, heavy metal-free, near-infrared (NIR) QDs for applications with high radiative efficiency that span diverse applications, including down-conversion emitters for high-performance luminescent solar concentrators. In this work, we use a combination of theoretical and experimental approaches to synthesize bright, NIR luminescent InAs/InP/ZnSe QDs and elucidate fundamental material attributes that remain obstacles for development of near-unity NIR QD luminophores. First, using Monte Carlo ray tracing, we identify the atomic and electronic structural attributes of InAs core/shell, NIR emitters, whose luminescence properties can be tailored by synthetic design to match most beneficially those of high-performance, single-band-gap photovoltaic devices based on important semiconductor materials, such Si or GaAs. Second, we synthesize InAs/InP/ZnSe QDs based on the optical attributes found to maximize LSC performance and develop methods to improve the emissive qualities of NIR emitters with large, tunable Stokes ratios, narrow emission linewidths, and high luminescence quantum yields (here reaching 60 ± 2%). Third, we employ atomistic electronic structure calculations to explore charge carrier behavior at the nanoscale affected by interfacial atomic structures and find that significantmore » exciton occupation of the InP shell occurs in most cases despite the InAs/InP type I bulk band alignment. Furthermore, the density of the valence band maximum state extends anisotropically through the (111) crystal planes to the terminal InP surfaces/interfaces, indicating that surface defects, such as unpassivated phosphorus dangling bonds, located on the (111) facets play an outsized role in disrupting the valence band maximum and quenching photoluminescence.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [4]; ORCiD logo [5];  [3];  [6]; ORCiD logo [4];  [3]; ORCiD logo [7]; ORCiD logo [4]; ORCiD logo [6]; ORCiD logo [4]; ORCiD logo [8];  [9]
  1. Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States, Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
  2. Department of Chemistry, University of California, Berkeley, California 94720, United States
  3. Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
  4. Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
  5. Department of Chemistry, University of California, Berkeley, California 94720, United States, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
  6. Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
  7. Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
  8. Department of Chemistry, University of California, Berkeley, California 94720, United States, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States, The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
  9. Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States, Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden
Publication Date:
Research Org.:
Univ. of Illinois at Urbana-Champaign, IL (United States); Energy Frontier Research Centers (EFRC) (United States). Photonics at Thermodynamic Limits; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1865203
Alternate Identifier(s):
OSTI ID: 1866743; OSTI ID: 1925194
Grant/Contract Number:  
SC0019140; SC0019323; AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Name: Journal of Physical Chemistry. C Journal Volume: 126 Journal Issue: 17; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 14 SOLAR ENERGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; excitons; indium arsenide; materials; quantum dots; thickness

Citation Formats

Enright, Michael J., Jasrasaria, Dipti, Hanchard, Mathilde M., Needell, David R., Phelan, Megan E., Weinberg, Daniel, McDowell, Brinn E., Hsiao, Haw-Wen, Akbari, Hamidreza, Kottwitz, Matthew, Potter, Maggie M., Wong, Joeson, Zuo, Jian-Min, Atwater, Harry A., Rabani, Eran, and Nuzzo, Ralph G. Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emissive InAs/InP/ZnSe Quantum Dots. United States: N. p., 2022. Web. doi:10.1021/acs.jpcc.2c01499.
Enright, Michael J., Jasrasaria, Dipti, Hanchard, Mathilde M., Needell, David R., Phelan, Megan E., Weinberg, Daniel, McDowell, Brinn E., Hsiao, Haw-Wen, Akbari, Hamidreza, Kottwitz, Matthew, Potter, Maggie M., Wong, Joeson, Zuo, Jian-Min, Atwater, Harry A., Rabani, Eran, & Nuzzo, Ralph G. Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emissive InAs/InP/ZnSe Quantum Dots. United States. https://doi.org/10.1021/acs.jpcc.2c01499
Enright, Michael J., Jasrasaria, Dipti, Hanchard, Mathilde M., Needell, David R., Phelan, Megan E., Weinberg, Daniel, McDowell, Brinn E., Hsiao, Haw-Wen, Akbari, Hamidreza, Kottwitz, Matthew, Potter, Maggie M., Wong, Joeson, Zuo, Jian-Min, Atwater, Harry A., Rabani, Eran, and Nuzzo, Ralph G. Tue . "Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emissive InAs/InP/ZnSe Quantum Dots". United States. https://doi.org/10.1021/acs.jpcc.2c01499.
@article{osti_1865203,
title = {Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emissive InAs/InP/ZnSe Quantum Dots},
author = {Enright, Michael J. and Jasrasaria, Dipti and Hanchard, Mathilde M. and Needell, David R. and Phelan, Megan E. and Weinberg, Daniel and McDowell, Brinn E. and Hsiao, Haw-Wen and Akbari, Hamidreza and Kottwitz, Matthew and Potter, Maggie M. and Wong, Joeson and Zuo, Jian-Min and Atwater, Harry A. and Rabani, Eran and Nuzzo, Ralph G.},
abstractNote = {The development of bright, near-infrared-emissive quantum dots (QDs) is a necessary requirement for the realization of important new classes of technology. Specifically, there exist significant needs for brighter, heavy metal-free, near-infrared (NIR) QDs for applications with high radiative efficiency that span diverse applications, including down-conversion emitters for high-performance luminescent solar concentrators. In this work, we use a combination of theoretical and experimental approaches to synthesize bright, NIR luminescent InAs/InP/ZnSe QDs and elucidate fundamental material attributes that remain obstacles for development of near-unity NIR QD luminophores. First, using Monte Carlo ray tracing, we identify the atomic and electronic structural attributes of InAs core/shell, NIR emitters, whose luminescence properties can be tailored by synthetic design to match most beneficially those of high-performance, single-band-gap photovoltaic devices based on important semiconductor materials, such Si or GaAs. Second, we synthesize InAs/InP/ZnSe QDs based on the optical attributes found to maximize LSC performance and develop methods to improve the emissive qualities of NIR emitters with large, tunable Stokes ratios, narrow emission linewidths, and high luminescence quantum yields (here reaching 60 ± 2%). Third, we employ atomistic electronic structure calculations to explore charge carrier behavior at the nanoscale affected by interfacial atomic structures and find that significant exciton occupation of the InP shell occurs in most cases despite the InAs/InP type I bulk band alignment. Furthermore, the density of the valence band maximum state extends anisotropically through the (111) crystal planes to the terminal InP surfaces/interfaces, indicating that surface defects, such as unpassivated phosphorus dangling bonds, located on the (111) facets play an outsized role in disrupting the valence band maximum and quenching photoluminescence.},
doi = {10.1021/acs.jpcc.2c01499},
journal = {Journal of Physical Chemistry. C},
number = 17,
volume = 126,
place = {United States},
year = {Tue Apr 26 00:00:00 EDT 2022},
month = {Tue Apr 26 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acs.jpcc.2c01499

Save / Share:

Works referenced in this record:

Absorption Cross-Section and Related Optical Properties of Colloidal InAs Quantum Dots
journal, April 2005

  • Yu, Pingrong; Beard, Matthew C.; Ellingson, Randy J.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 15
  • DOI: 10.1021/jp046127i

Ultrasensitive solution-cast quantum dot photodetectors
journal, July 2006

  • Konstantatos, Gerasimos; Howard, Ian; Fischer, Armin
  • Nature, Vol. 442, Issue 7099
  • DOI: 10.1038/nature04855

Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence
journal, April 2019

  • Li, Yang; Hou, Xiaoqi; Dai, Xingliang
  • Journal of the American Chemical Society, Vol. 141, Issue 16
  • DOI: 10.1021/jacs.8b12908

Suppression of Auger Recombination by Gradient Alloying in InAs/CdSe/CdS QDs
journal, August 2020


Electronic structure of self-assembled In As In P quantum dots: Comparison with self-assembled In As Ga As quantum dots
journal, January 2008


Ga for Zn Cation Exchange Allows for Highly Luminescent and Photostable InZnP-Based Quantum Dots
journal, June 2017


Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots
journal, August 2015

  • Meinardi, Francesco; McDaniel, Hunter; Carulli, Francesco
  • Nature Nanotechnology, Vol. 10, Issue 10
  • DOI: 10.1038/nnano.2015.178

On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots
journal, August 2002

  • Leatherdale, C. A.; Woo, W. -K.; Mikulec, F. V.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 31
  • DOI: 10.1021/jp025698c

Absolute Photoluminescence Quantum Yields of IR-26 Dye, PbS, and PbSe Quantum Dots
journal, July 2010

  • Semonin, Octavi E.; Johnson, Justin C.; Luther, Joseph M.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 16
  • DOI: 10.1021/jz100830r

Programmed Assembly of DNA Functionalized Quantum Dots
journal, September 1999

  • Mitchell, Gregory P.; Mirkin, Chad A.; Letsinger, Robert L.
  • Journal of the American Chemical Society, Vol. 121, Issue 35
  • DOI: 10.1021/ja991662v

PbS quantum dot electroabsorption modulation across the extended communications band 1200–1700nm
journal, August 2005

  • Klem, Ethan J. D.; Levina, Larissa; Sargent, Edward H.
  • Applied Physics Letters, Vol. 87, Issue 5
  • DOI: 10.1063/1.2001737

Infrared Quantum Dots
journal, March 2005


Infrared Quantum Dots: Progress, Challenges, and Opportunities
journal, January 2019


Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer
journal, August 1994

  • Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P.
  • Nature, Vol. 370, Issue 6488
  • DOI: 10.1038/370354a0

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Rare-earth-doped biological composites as in vivo shortwave infrared reporters
journal, July 2013

  • Naczynski, D. J.; Tan, M. C.; Zevon, M.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3199

Ag 2 S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window
journal, April 2012

  • Zhang, Yan; Hong, Guosong; Zhang, Yejun
  • ACS Nano, Vol. 6, Issue 5
  • DOI: 10.1021/nn301218z

Cation Exchange Induced Transformation of InP Magic-Sized Clusters
journal, September 2017


InP quantum dots: Electronic structure, surface effects, and the redshifted emission
journal, July 1997


1.3μm to 1.55μm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Device
journal, November 2003

  • Steckel, J. S.; Coe-Sullivan, S.; Bulović, V.
  • Advanced Materials, Vol. 15, Issue 21
  • DOI: 10.1002/adma.200305449

Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties
journal, January 2013

  • Kershaw, Stephen V.; Susha, Andrei S.; Rogach, Andrey L.
  • Chemical Society Reviews, Vol. 42, Issue 7
  • DOI: 10.1039/c2cs35331h

Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores
journal, October 2000

  • Banin, Uri
  • Journal of the American Chemical Society, Vol. 122, Issue 40, p. 9692-9702
  • DOI: 10.1021/ja001386g

Ray-trace modelling of reflectors for quantum dot solar concentrators
conference, September 2007

  • Kennedy, M.; McCormack, S. J.; Doran, J.
  • Solar Energy + Applications, SPIE Proceedings
  • DOI: 10.1117/12.733786

Interatomic potentials for the vibrational properties of III-V semiconductor nanostructures
journal, May 2011


Probing Surface Defects of InP Quantum Dots Using Phosphorus Kα and Kβ X-ray Emission Spectroscopy
journal, August 2018


Fluorescence Quantum Yields of a Series of Red and Near-Infrared Dyes Emitting at 600−1000 nm
journal, February 2011

  • Rurack, Knut; Spieles, Monika
  • Analytical Chemistry, Vol. 83, Issue 4
  • DOI: 10.1021/ac101329h

Large-Stokes-Shifted Infrared-Emitting InAs–In(Zn)P–ZnSe–ZnS Giant-Shell Quantum Dots by One-Pot Continuous-Injection Synthesis
journal, February 2019


Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield
journal, March 2019

  • Hanifi, David A.; Bronstein, Noah D.; Koscher, Brent A.
  • Science, Vol. 363, Issue 6432
  • DOI: 10.1126/science.aat3803

Local-density-derived semiempirical nonlocal pseudopotentials for InP with applications to large quantum dots
journal, January 1997


Indium Phosphide-Based Semiconductor Nanocrystals and Their Applications
journal, January 2012

  • Mushonga, Paul; Onani, Martin O.; Madiehe, Abram M.
  • Journal of Nanomaterials, Vol. 2012
  • DOI: 10.1155/2012/869284

Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes
journal, November 2019


Sub-Bandgap Photoinduced Transient Absorption Features in CdSe Nanostructures: The Role of Trapped Holes
journal, July 2020

  • Jasrasaria, Dipti; Philbin, John P.; Yan, Chang
  • The Journal of Physical Chemistry C, Vol. 124, Issue 31
  • DOI: 10.1021/acs.jpcc.0c04746

Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles
journal, August 2011

  • Şahin, Derya; Ilan, Boaz; Kelley, David F.
  • Journal of Applied Physics, Vol. 110, Issue 3
  • DOI: 10.1063/1.3619809

Nanocrystals for Luminescent Solar Concentrators
journal, January 2015

  • Bradshaw, Liam R.; Knowles, Kathryn E.; McDowall, Stephen
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504510t

Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals
journal, April 1998

  • Wei, Su-Huai; Zunger, Alex
  • Applied Physics Letters, Vol. 72, Issue 16
  • DOI: 10.1063/1.121249

Synthesis and Spectroscopy of Emissive, Surface-Modified, Copper-Doped Indium Phosphide Nanocrystals
journal, April 2020


Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared
journal, November 2016

  • Franke, Daniel; Harris, Daniel K.; Chen, Ou
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12749

Colloidal Quantum Dot Solar Cells
journal, June 2015


Solution-Processed Infrared Optoelectronics: Photovoltaics, Sensors, and Sources
journal, July 2008


Electroluminescence from CdSe quantum‐dot/polymer composites
journal, March 1995

  • Dabbousi, B. O.; Bawendi, M. G.; Onitsuka, O.
  • Applied Physics Letters, Vol. 66, Issue 11
  • DOI: 10.1063/1.113227

Solution-processed, high-performance light-emitting diodes based on quantum dots
journal, October 2014

  • Dai, Xingliang; Zhang, Zhenxing; Jin, Yizheng
  • Nature, Vol. 515, Issue 7525
  • DOI: 10.1038/nature13829

Solar energy conversion with fluorescent collectors
journal, October 1977


Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells
journal, November 2010

  • Nozik, A. J.; Beard, M. C.; Luther, J. M.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr900289f

Seeded Growth of Nanoscale Semiconductor Tetrapods: Generality and the Role of Cation Exchange
journal, May 2020


Colloidal Chemistry in Molten Salts: Synthesis of Luminescent In 1– x Ga x P and In 1– x Ga x As Quantum Dots
journal, August 2018

  • Srivastava, Vishwas; Kamysbayev, Vladislav; Hong, Liang
  • Journal of the American Chemical Society, Vol. 140, Issue 38
  • DOI: 10.1021/jacs.8b06971

Photonic Crystal Waveguides for >90% Light Trapping Efficiency in Luminescent Solar Concentrators
journal, June 2020


Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration
journal, August 2015


Pseudopotential study of electron-hole excitations in colloidal free-standing InAs quantum dots
journal, January 2000


Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix
journal, April 2014

  • Meinardi, Francesco; Colombo, Annalisa; Velizhanin, Kirill A.
  • Nature Photonics, Vol. 8, Issue 5, p. 392-399
  • DOI: 10.1038/nphoton.2014.54

Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer
journal, December 1997

  • Schlamp, M. C.; Peng, Xiaogang; Alivisatos, A. P.
  • Journal of Applied Physics, Vol. 82, Issue 11
  • DOI: 10.1063/1.366452

Mid-infrared HgTe colloidal quantum dot photodetectors
journal, July 2011


Semiconductor Nanocrystals as Fluorescent Biological Labels
patent, September 1998


Synthesis of InAs/CdSe/ZnSe Core/Shell1/Shell2 Structures with Bright and Stable Near-Infrared Fluorescence
journal, January 2006

  • Aharoni, Assaf; Mokari, Taleb; Popov, Inna
  • Journal of the American Chemical Society, Vol. 128, Issue 1
  • DOI: 10.1021/ja056326v

Single-Precursor Intermediate Shelling Enables Bright, Narrow Line Width InAs/InZnP-Based QD Emitters
journal, March 2020


Scalable Synthesis of InAs Quantum Dots Mediated through Indium Redox Chemistry
journal, February 2020

  • Ginterseder, Matthias; Franke, Daniel; Perkinson, Collin F.
  • Journal of the American Chemical Society, Vol. 142, Issue 9
  • DOI: 10.1021/jacs.9b12350

Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection
journal, September 1998


Re-examination of the Size-Dependent Absorption Properties of CdSe Quantum Dots
journal, October 2009

  • Jasieniak, Jacek; Smith, Lisa; van Embden, Joel
  • The Journal of Physical Chemistry C, Vol. 113, Issue 45
  • DOI: 10.1021/jp906827m

Electron–Hole Correlations Govern Auger Recombination in Nanostructures
journal, November 2018


Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes
journal, February 2012

  • Kim, Sungwoo; Kim, Taehoon; Kang, Meejae
  • Journal of the American Chemical Society, Vol. 134, Issue 8
  • DOI: 10.1021/ja210211z

Bright, multicoloured light-emitting diodes based on quantum dots
journal, November 2007


Core/Shell Semiconductor Nanocrystals
journal, January 2009


Tuning Hot Carrier Dynamics of InP/ZnSe/ZnS Quantum Dots by Shell Morphology Control
journal, December 2021


Next-generation in vivo optical imaging with short-wave infrared quantum dots
journal, April 2017

  • Bruns, Oliver T.; Bischof, Thomas S.; Harris, Daniel K.
  • Nature Biomedical Engineering, Vol. 1, Issue 4
  • DOI: 10.1038/s41551-017-0056

To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment
journal, June 2016

  • Pu, Chaodan; Peng, Xiaogang
  • Journal of the American Chemical Society, Vol. 138, Issue 26
  • DOI: 10.1021/jacs.6b02909

Near-infrared quantum dots: synthesis, functionalization and analytical applications
journal, January 2010


Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals
journal, June 1998

  • Mattoussi, Hedi; Radzilowski, Leonard H.; Dabbousi, Bashir O.
  • Journal of Applied Physics, Vol. 83, Issue 12
  • DOI: 10.1063/1.367978

Efficient Near‐Infrared Light‐Emitting Diodes based on In(Zn)As–In(Zn)P–GaP–ZnS Quantum Dots
journal, November 2019

  • Wijaya, Hadhi; Darwan, Daryl; Zhao, Xiaofei
  • Advanced Functional Materials, Vol. 30, Issue 4
  • DOI: 10.1002/adfm.201906483

Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium
journal, March 1999

  • Rabani, Eran; Hetényi, Balázs; Berne, B. J.
  • The Journal of Chemical Physics, Vol. 110, Issue 11
  • DOI: 10.1063/1.478431