DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strong Magnetocrystalline Anisotropy Arising from Metal–Ligand Covalency in a Metal–Organic Candidate for 2D Magnetic Order

Abstract

Layered metal-organic frameworks are promising candidates for new two-dimensional (2D) magnets, as the synthetic programmability of these materials can provide a route to diverse structural and electronic properties. However, such framework materials typically lack the heavy elements that engender magnetocrystalline anisotropy in the monolayer ferromagnets reported to date. Alternative sources of magnetic anisotropy are therefore needed in these materials. Here, we report the synthesis of single crystals of the framework material (NMe4)2[Fe2L3] (H2L = 3,6-dichloro-2,5-dihydroxybenzoquinone) and evaluate the angular dependence of its magnetic properties. Oriented-crystal magnetization measurements reveal strong uniaxial anisotropy, where the easy axis is aligned with the crystallographic c axis. While the spin carriers of this structure are isotropic S = 5/2 FeIII metal centers and S = 1/2 organic linkers, the anisotropy energy of the framework material is comparable to that of reported 2D ferromagnets. Density functional theory calculations indicate that the observed magnetocrystalline anisotropy arises from ligand-to-metal charge transfer that enhances the magnetic anisotropy of the otherwise-isotropic Fe centers, suggesting that metal-ligand covalency can be utilized as a general additive for the development of 2D magnets. These results show the possibility for (NMe4)2[Fe2L3] to retain magnetic order down to the 2D monolayer limit. In addition, themore » combination of large magnetic anisotropy and semiconducting character in (NMe4)2[Fe2L3] highlights its potential as a new 2D magnetic semiconductor.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [5]
  1. Northwestern Univ., Evanston, IL (United States)
  2. Univ. of California, Berkeley, CA (United States)
  3. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  4. Northwestern Univ., Evanston, IL (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  5. Northwestern Univ., Evanston, IL (United States); Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Northwestern Univ., Evanston, IL (United States)
Sponsoring Org.:
Camille and Henry Dreyfus Foundation; National Science Foundation (NSF); State of Illinois; Institute of Nanotechnology (IIN); USDOE Office of Science (SC); USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1865140
Alternate Identifier(s):
OSTI ID: 1905576; OSTI ID: 1961803
Grant/Contract Number:  
SC0019356; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 33; Journal Issue: 22; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Two dimensional materials; Magnetic properties; Crystals; Crystal structure; Layered materials

Citation Formats

Wang, Yiran, Ziebel, Michael E., Sun, Lei, Gish, J. Tyler, Pearson, Tyler J., Lu, Xue-Zeng, Thorarinsdottir, Agnes E., Hersam, Mark C., Long, Jeffrey R., Freedman, Danna E., Rondinelli, James M., Puggioni, Danilo, and Harris, T. David. Strong Magnetocrystalline Anisotropy Arising from Metal–Ligand Covalency in a Metal–Organic Candidate for 2D Magnetic Order. United States: N. p., 2021. Web. doi:10.1021/acs.chemmater.1c02670.
Wang, Yiran, Ziebel, Michael E., Sun, Lei, Gish, J. Tyler, Pearson, Tyler J., Lu, Xue-Zeng, Thorarinsdottir, Agnes E., Hersam, Mark C., Long, Jeffrey R., Freedman, Danna E., Rondinelli, James M., Puggioni, Danilo, & Harris, T. David. Strong Magnetocrystalline Anisotropy Arising from Metal–Ligand Covalency in a Metal–Organic Candidate for 2D Magnetic Order. United States. https://doi.org/10.1021/acs.chemmater.1c02670
Wang, Yiran, Ziebel, Michael E., Sun, Lei, Gish, J. Tyler, Pearson, Tyler J., Lu, Xue-Zeng, Thorarinsdottir, Agnes E., Hersam, Mark C., Long, Jeffrey R., Freedman, Danna E., Rondinelli, James M., Puggioni, Danilo, and Harris, T. David. Tue . "Strong Magnetocrystalline Anisotropy Arising from Metal–Ligand Covalency in a Metal–Organic Candidate for 2D Magnetic Order". United States. https://doi.org/10.1021/acs.chemmater.1c02670. https://www.osti.gov/servlets/purl/1865140.
@article{osti_1865140,
title = {Strong Magnetocrystalline Anisotropy Arising from Metal–Ligand Covalency in a Metal–Organic Candidate for 2D Magnetic Order},
author = {Wang, Yiran and Ziebel, Michael E. and Sun, Lei and Gish, J. Tyler and Pearson, Tyler J. and Lu, Xue-Zeng and Thorarinsdottir, Agnes E. and Hersam, Mark C. and Long, Jeffrey R. and Freedman, Danna E. and Rondinelli, James M. and Puggioni, Danilo and Harris, T. David},
abstractNote = {Layered metal-organic frameworks are promising candidates for new two-dimensional (2D) magnets, as the synthetic programmability of these materials can provide a route to diverse structural and electronic properties. However, such framework materials typically lack the heavy elements that engender magnetocrystalline anisotropy in the monolayer ferromagnets reported to date. Alternative sources of magnetic anisotropy are therefore needed in these materials. Here, we report the synthesis of single crystals of the framework material (NMe4)2[Fe2L3] (H2L = 3,6-dichloro-2,5-dihydroxybenzoquinone) and evaluate the angular dependence of its magnetic properties. Oriented-crystal magnetization measurements reveal strong uniaxial anisotropy, where the easy axis is aligned with the crystallographic c axis. While the spin carriers of this structure are isotropic S = 5/2 FeIII metal centers and S = 1/2 organic linkers, the anisotropy energy of the framework material is comparable to that of reported 2D ferromagnets. Density functional theory calculations indicate that the observed magnetocrystalline anisotropy arises from ligand-to-metal charge transfer that enhances the magnetic anisotropy of the otherwise-isotropic Fe centers, suggesting that metal-ligand covalency can be utilized as a general additive for the development of 2D magnets. These results show the possibility for (NMe4)2[Fe2L3] to retain magnetic order down to the 2D monolayer limit. In addition, the combination of large magnetic anisotropy and semiconducting character in (NMe4)2[Fe2L3] highlights its potential as a new 2D magnetic semiconductor.},
doi = {10.1021/acs.chemmater.1c02670},
journal = {Chemistry of Materials},
number = 22,
volume = 33,
place = {United States},
year = {Tue Nov 02 00:00:00 EDT 2021},
month = {Tue Nov 02 00:00:00 EDT 2021}
}

Works referenced in this record:

Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004


Two-dimensional atomic crystals
journal, July 2005

  • Novoselov, K. S.; Jiang, D.; Schedin, F.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 30, p. 10451-10453
  • DOI: 10.1073/pnas.0502848102

Two-dimensional van der Waals materials
journal, September 2016

  • Ajayan, Pulickel; Kim, Philip; Banerjee, Kaustav
  • Physics Today, Vol. 69, Issue 9
  • DOI: 10.1063/PT.3.3297

Two-dimensional gas of massless Dirac fermions in graphene
journal, November 2005

  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.
  • Nature, Vol. 438, Issue 7065, p. 197-200
  • DOI: 10.1038/nature04233

Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010


Heterointerface effects in the electrointercalation of van der Waals heterostructures
journal, June 2018


Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

2D materials and van der Waals heterostructures
journal, July 2016


Superconductivity and strong correlations in moiré flat bands
journal, May 2020


Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures
journal, September 2020


Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
journal, June 2017

  • Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén
  • Nature, Vol. 546, Issue 7657
  • DOI: 10.1038/nature22391

Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
journal, April 2017


Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2
journal, August 2018


Electrical control of 2D magnetism in bilayer CrI3
journal, April 2018


Electric-field switching of two-dimensional van der Waals magnets
journal, March 2018


Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
journal, May 2018


Gate-tunable spin waves in antiferromagnetic atomic bilayers
journal, June 2020


Electrical spin injection in a ferromagnetic semiconductor heterostructure
journal, December 1999

  • Ohno, Y.; Young, D. K.; Beschoten, B.
  • Nature, Vol. 402, Issue 6763
  • DOI: 10.1038/45509

Current-induced domain-wall switching in a ferromagnetic semiconductor structure
journal, April 2004

  • Yamanouchi, M.; Chiba, D.; Matsukura, F.
  • Nature, Vol. 428, Issue 6982
  • DOI: 10.1038/nature02441

Challenges for semiconductor spintronics
journal, March 2007

  • Awschalom, David D.; Flatté, Michael E.
  • Nature Physics, Vol. 3, Issue 3
  • DOI: 10.1038/nphys551

Electric-field control of ferromagnetism
journal, December 2000

  • Ohno, H.; Chiba, D.; Matsukura, F.
  • Nature, Vol. 408, Issue 6815
  • DOI: 10.1038/35050040

Electrical Manipulation of Magnetization Reversal in a Ferromagnetic Semiconductor
journal, August 2003


Magnetic 2D materials and heterostructures
journal, May 2019


Intrinsic Van Der Waals Magnetic Materials from Bulk to the 2D Limit: New Frontiers of Spintronics
journal, May 2019


Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr
journal, August 2020

  • Telford, Evan J.; Dismukes, Avalon H.; Lee, Kihong
  • Advanced Materials, Vol. 32, Issue 37
  • DOI: 10.1002/adma.202003240

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Electrically Conductive Metal–Organic Frameworks
journal, April 2020


Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization
journal, July 2013

  • Hendon, Christopher H.; Tiana, Davide; Fontecave, Marc
  • Journal of the American Chemical Society, Vol. 135, Issue 30
  • DOI: 10.1021/ja405350u

Reversible Magnetism between an Antiferromagnet and a Ferromagnet Related to Solvation/Desolvation in a Robust Layered [Ru 2 ] 2 TCNQ Charge-Transfer System
journal, August 2010

  • Motokawa, Natsuko; Matsunaga, Satoshi; Takaishi, Shinya
  • Journal of the American Chemical Society, Vol. 132, Issue 34
  • DOI: 10.1021/ja102412g

Half-metallicity of a kagome spin lattice: the case of a manganese bis-dithiolene monolayer
journal, January 2013

  • Zhao, Mingwen; Wang, Aizhu; Zhang, Xiaoming
  • Nanoscale, Vol. 5, Issue 21
  • DOI: 10.1039/c3nr03323f

2D Conductive Iron-Quinoid Magnets Ordering up to T c = 105 K via Heterogenous Redox Chemistry
journal, March 2017

  • DeGayner, Jordan A.; Jeon, Ie-Rang; Sun, Lei
  • Journal of the American Chemical Society, Vol. 139, Issue 11
  • DOI: 10.1021/jacs.7b00705

Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization
journal, August 2018

  • López-Cabrelles, J.; Mañas-Valero, S.; Vitórica-Yrezábal, I. J.
  • Nature Chemistry, Vol. 10, Issue 10
  • DOI: 10.1038/s41557-018-0113-9

Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry
journal, September 2018

  • Pedersen, Kasper S.; Perlepe, Panagiota; Aubrey, Michael L.
  • Nature Chemistry, Vol. 10, Issue 10
  • DOI: 10.1038/s41557-018-0107-7

A semiconducting layered metal-organic framework magnet
journal, July 2019


Metal–Organic Framework Magnets
journal, February 2020


Metal-organic magnets with large coercivity and ordering temperatures up to 242°C
journal, October 2020


Ferromagnetic-resonance study of ultrathin bcc Fe(100) films grown epitaxially on fcc Ag(100) substrates
journal, October 1987


On the origin of magnetic anisotropy in two dimensional CrI 3
journal, June 2017


Temperature-dependent magnetic anisotropy in the layered magnetic semiconductors Cr I 3 and CrB r 3
journal, February 2018


Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal
journal, January 2020


Anisotropy of rare-earth magnets
journal, August 2009


Nonmetallic Atoms Induced Magnetic Anisotropy in Monolayer Chromium Trihalides
journal, December 2018

  • Yang, Baishun; Zhang, Xiaolin; Yang, Hongxin
  • The Journal of Physical Chemistry C, Vol. 123, Issue 1
  • DOI: 10.1021/acs.jpcc.8b09939

Coordination compounds of 1,4-dihydroxybenzoquinone and its homologues. Structures and properties
journal, January 2002


Phenazineoxonium chloranilatomanganate and chloranilatoferrate: synthesis, structure, magnetic properties, and Mössbauer spectra
journal, June 2011

  • Shilov, G. V.; Nikitina, Z. K.; Ovanesyan, N. S.
  • Russian Chemical Bulletin, Vol. 60, Issue 6
  • DOI: 10.1007/s11172-011-0190-z

A Family of Layered Chiral Porous Magnets Exhibiting Tunable Ordering Temperatures
journal, August 2013

  • Atzori, Matteo; Benmansour, Samia; Mínguez Espallargas, Guillermo
  • Inorganic Chemistry, Vol. 52, Issue 17
  • DOI: 10.1021/ic4013284

A 2D Semiquinone Radical-Containing Microporous Magnet with Solvent-Induced Switching from T c = 26 to 80 K
journal, December 2015

  • Jeon, Ie-Rang; Negru, Bogdan; Van Duyne, Richard P.
  • Journal of the American Chemical Society, Vol. 137, Issue 50
  • DOI: 10.1021/jacs.5b10382

Control of Electronic Structure and Conductivity in Two-Dimensional Metal–Semiquinoid Frameworks of Titanium, Vanadium, and Chromium
journal, February 2018

  • Ziebel, Michael E.; Darago, Lucy E.; Long, Jeffrey R.
  • Journal of the American Chemical Society, Vol. 140, Issue 8
  • DOI: 10.1021/jacs.7b13510

Metal–Diamidobenzoquinone Frameworks via Post-Synthetic Linker Exchange
journal, February 2020

  • Liu, Lujia; Li, Liang; Ziebel, Michael E.
  • Journal of the American Chemical Society, Vol. 142, Issue 10
  • DOI: 10.1021/jacs.9b11952

Tuning Charge-State Localization in a Semiconductive Iron(III)–Chloranilate Framework Magnet Using a Redox-Active Cation
journal, August 2020

  • van Koeverden, Martin P.; Abrahams, Brendan F.; D’Alessandro, Deanna M.
  • Chemistry of Materials, Vol. 32, Issue 17
  • DOI: 10.1021/acs.chemmater.0c03132

Magnetic Phase Switching in a Tetraoxolene-Bridged Honeycomb Ferrimagnet Using a Lithium Ion Battery System
journal, November 2017


Reversible redox switching of magnetic order and electrical conductivity in a 2D manganese benzoquinoid framework
journal, January 2019

  • Liu, Lujia; DeGayner, Jordan A.; Sun, Lei
  • Chemical Science, Vol. 10, Issue 17
  • DOI: 10.1039/C9SC00606K

Effects of Covalency on Anionic Redox Chemistry in Semiquinoid-Based Metal–Organic Frameworks
journal, January 2020

  • Ziebel, Michael E.; Gaggioli, Carlo Alberto; Turkiewicz, Ari B.
  • Journal of the American Chemical Society, Vol. 142, Issue 5
  • DOI: 10.1021/jacs.9b13050

Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal–Organic Framework
journal, December 2015

  • Darago, Lucy E.; Aubrey, Michael L.; Yu, Chung Jui
  • Journal of the American Chemical Society, Vol. 137, Issue 50
  • DOI: 10.1021/jacs.5b10385

A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys
journal, May 1948

  • Stoner, E. C.; Wohlfarth, E. P.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 240, Issue 826
  • DOI: 10.1098/rsta.1948.0007

Evolution of Magnetic Anisotropy With Sm Contents in Sm–Co Thin Films
journal, November 2018

  • Sharma, Shalini; Radulov, Iliya; Major, Marton
  • IEEE Transactions on Magnetics, Vol. 54, Issue 11
  • DOI: 10.1109/TMAG.2018.2837006

A Room-Temperature Molecular/Organic-Based Magnet
journal, June 1991


[MII(tcne)2]⋅x CH2Cl2 (M=Mn, Fe, Co, Ni) Molecule-Based Magnets withTc Values Above 100 K and Coercive Fields up to 6500 Oe
journal, March 1998


Large Coercivity and High Remanent Magnetization Organic-Based Magnets
journal, January 2000


Electrochemical development of magnetic long-range correlations with Tc = 128 K in a tetraoxolene-bridged Fe-based framework
journal, January 2020

  • Chen, Jian; Taniguchi, Kouji; Sekine, Yoshihiro
  • Journal of Magnetism and Magnetic Materials, Vol. 494
  • DOI: 10.1016/j.jmmm.2019.165818

The effect of magnetization anisotropy and paramagnetic susceptibility on the magnetization process
journal, December 2015

  • Bolyachkin, A. S.; Neznakhin, D. S.; Bartashevich, M. I.
  • Journal of Applied Physics, Vol. 118, Issue 21
  • DOI: 10.1063/1.4936604

Classical Theory of the Temperature Dependence of Magnetic Anisotropy Energy
journal, December 1954


Temperature Dependence of Ferromagnetic Anisotropy
journal, March 1958


Magnetic anisotropy of the single-crystalline ferromagnetic insulator Cr 2 Ge 2 Te 6
journal, February 2016

  • Zhang, Xiao; Zhao, Yuelei; Song, Qi
  • Japanese Journal of Applied Physics, Vol. 55, Issue 3
  • DOI: 10.7567/JJAP.55.033001

Origin of magnetic anisotropy and spiral spin order in multiferroic BiFeO 3
journal, June 2012

  • Zhang, J. T.; Lu, X. M.; Zhou, J.
  • Applied Physics Letters, Vol. 100, Issue 24
  • DOI: 10.1063/1.4729555

Magnetic Properties of FeCl 3 -Graphite Compounds. II. Magnetic Susceptibilities.
journal, April 1974

  • Ohhashi, Kentaro; Tsujikawa, Ikuji
  • Journal of the Physical Society of Japan, Vol. 36, Issue 4
  • DOI: 10.1143/JPSJ.36.980

Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics
journal, September 2012


Rapport sur quelques recherches dans le domaine du magnétisme aux laboratoires Philips
journal, January 1959


Magnetic Anisotropy of Magnetoplumbite BaFe 12 O 19
journal, May 1965

  • Fuchikami, Nobuko
  • Journal of the Physical Society of Japan, Vol. 20, Issue 5
  • DOI: 10.1143/JPSJ.20.760

Maximally localized Wannier functions: Theory and applications
journal, October 2012

  • Marzari, Nicola; Mostofi, Arash A.; Yates, Jonathan R.
  • Reviews of Modern Physics, Vol. 84, Issue 4
  • DOI: 10.1103/RevModPhys.84.1419

An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions
journal, August 2014

  • Mostofi, Arash A.; Yates, Jonathan R.; Pizzi, Giovanni
  • Computer Physics Communications, Vol. 185, Issue 8
  • DOI: 10.1016/j.cpc.2014.05.003

Nanosheets of Two-Dimensional Magnetic and Conducting Fe(II)/Fe(III) Mixed-Valence Metal–Organic Frameworks
journal, July 2017

  • Benmansour, Samia; Abhervé, Alexandre; Gómez-Claramunt, Patricia
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 31
  • DOI: 10.1021/acsami.7b08322

Two-dimensional, conductive niobium and molybdenum metal–organic frameworks
journal, January 2020

  • Ziebel, Michael E.; Ondry, Justin C.; Long, Jeffrey R.
  • Chemical Science, Vol. 11, Issue 26
  • DOI: 10.1039/D0SC02515A

Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2
journal, October 2018


A Ferric Semiquinoid Single-Chain Magnet via Thermally-Switchable Metal–Ligand Electron Transfer
journal, May 2018

  • DeGayner, Jordan A.; Wang, Kunyu; Harris, T. David
  • Journal of the American Chemical Society, Vol. 140, Issue 21
  • DOI: 10.1021/jacs.8b03949

Diamagnetic Corrections and Pascal's Constants
journal, April 2008

  • Bain, Gordon A.; Berry, John F.
  • Journal of Chemical Education, Vol. 85, Issue 4
  • DOI: 10.1021/ed085p532