DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetized ablative Rayleigh-Taylor instability in three dimensions

Abstract

Three-dimensional extended-magnetohydrodynamics simulations of the magnetized ablative Rayleigh-Taylor instability are presented. Previous two-dimensional (2D) simulations claiming perturbation suppression by magnetic tension are shown to be misleading, as they do not include the most unstable dimension. For perturbation modes along the applied field direction, the magnetic field simultaneously reduces ablative stabilization and adds magnetic tension stabilization; the stabilizing term is found to dominate for applied fields > 5 T, with both effects increasing in importance at short wavelengths. Additionally, for modes perpendicular to the applied field, magnetic tension does not directly stabilize the perturbation but can result in moderately slower growth due to the perturbation appearing to be 2D (albeit in a different orientation to 2D inertial confinement fusion simulations). In cases where thermal ablative stabilization is dominant the applied field increases the peak bubble-spike height. Resistive diffusion is shown to be important for short wavelengths and long timescales, reducing the effectiveness of tension stabilization.

Authors:
ORCiD logo [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1860894
Report Number(s):
LLNL-JRNL-827517
Journal ID: ISSN 2470-0045; 1041272; TRN: US2305452
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. E
Additional Journal Information:
Journal Volume: 105; Journal Issue: 2; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; implosion symmetry; inertial confinement fusion; magnetic field generation & plasma dynamo; magnetohydrodynamics; magnetoinertial fusion; nuclear fusion; plasma stability; plasma transport; Rayleigh-Taylor instability

Citation Formats

Walsh, C. A. Magnetized ablative Rayleigh-Taylor instability in three dimensions. United States: N. p., 2022. Web. doi:10.1103/physreve.105.025206.
Walsh, C. A. Magnetized ablative Rayleigh-Taylor instability in three dimensions. United States. https://doi.org/10.1103/physreve.105.025206
Walsh, C. A. Wed . "Magnetized ablative Rayleigh-Taylor instability in three dimensions". United States. https://doi.org/10.1103/physreve.105.025206. https://www.osti.gov/servlets/purl/1860894.
@article{osti_1860894,
title = {Magnetized ablative Rayleigh-Taylor instability in three dimensions},
author = {Walsh, C. A.},
abstractNote = {Three-dimensional extended-magnetohydrodynamics simulations of the magnetized ablative Rayleigh-Taylor instability are presented. Previous two-dimensional (2D) simulations claiming perturbation suppression by magnetic tension are shown to be misleading, as they do not include the most unstable dimension. For perturbation modes along the applied field direction, the magnetic field simultaneously reduces ablative stabilization and adds magnetic tension stabilization; the stabilizing term is found to dominate for applied fields > 5 T, with both effects increasing in importance at short wavelengths. Additionally, for modes perpendicular to the applied field, magnetic tension does not directly stabilize the perturbation but can result in moderately slower growth due to the perturbation appearing to be 2D (albeit in a different orientation to 2D inertial confinement fusion simulations). In cases where thermal ablative stabilization is dominant the applied field increases the peak bubble-spike height. Resistive diffusion is shown to be important for short wavelengths and long timescales, reducing the effectiveness of tension stabilization.},
doi = {10.1103/physreve.105.025206},
journal = {Physical Review. E},
number = 2,
volume = 105,
place = {United States},
year = {Wed Feb 23 00:00:00 EST 2022},
month = {Wed Feb 23 00:00:00 EST 2022}
}

Works referenced in this record:

Measuring magnetic flux suppression in high-power laser–plasma interactions
journal, January 2022

  • Campbell, P. T.; Walsh, C. A.; Russell, B. K.
  • Physics of Plasmas, Vol. 29, Issue 1
  • DOI: 10.1063/5.0062717

Magnetized directly-driven ICF capsules: increased instability growth from non-uniform laser drive
journal, September 2020


Impact of asymmetries on fuel performance in inertial confinement fusion
journal, November 2018


Extended-magnetohydrodynamics in under-dense plasmas
journal, February 2020

  • Walsh, C. A.; Chittenden, J. P.; Hill, D. W.
  • Physics of Plasmas, Vol. 27, Issue 2
  • DOI: 10.1063/1.5124144

Updated magnetized transport coefficients: impact on laser-plasmas with self-generated or applied magnetic fields
journal, September 2021


Compressing magnetic fields with high-energy lasers
journal, May 2010

  • Knauer, J. P.; Gotchev, O. V.; Chang, P. Y.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3416557

Fusion Yield Enhancement in Magnetized Laser-Driven Implosions
journal, July 2011


Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

Impact of imposed mode 2 laser drive asymmetry on inertial confinement fusion implosions
journal, January 2019

  • Gatu Johnson, M.; Appelbe, B. D.; Chittenden, J. P.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5066435

Mitigation of magneto-Rayleigh-Taylor instability growth in a triple-nozzle, neutron-producing gas-puff Z pinch
journal, August 2021


Self-Generated Magnetic Fields in the Stagnation Phase of Indirect-Drive Implosions on the National Ignition Facility
journal, April 2017


The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
journal, November 2015

  • Davies, J. R.; Betti, R.; Chang, P. -Y.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4935286

Perturbation modifications by pre-magnetisation of inertial confinement fusion implosions
journal, February 2019

  • Walsh, C. A.; McGlinchey, K.; Tong, J. K.
  • Physics of Plasmas, Vol. 26, Issue 2
  • DOI: 10.1063/1.5085498

Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities
journal, August 2019

  • Zhou, Ye; Clark, Timothy T.; Clark, Daniel S.
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5088745

Biermann battery magnetic fields in ICF capsules: Total magnetic flux generation
journal, September 2021

  • Walsh, C. A.; Clark, D. S.
  • Physics of Plasmas, Vol. 28, Issue 9
  • DOI: 10.1063/5.0059366

Performance Scaling in Magnetized Liner Inertial Fusion Experiments
journal, October 2020


Study of stability in a liner-on-target gas puff Z-pinch as a function of pre-embedded axial magnetic field
journal, January 2020

  • Conti, F.; Aybar, N.; Narkis, J.
  • Physics of Plasmas, Vol. 27, Issue 1
  • DOI: 10.1063/1.5131170

Preserving monotonicity in anisotropic diffusion
journal, November 2007


Neutron yield enhancement and suppression by magnetization in laser-driven cylindrical implosions
journal, June 2020

  • Hansen, E. C.; Davies, J. R.; Barnak, D. H.
  • Physics of Plasmas, Vol. 27, Issue 6
  • DOI: 10.1063/1.5144447

Hot-spot dynamics and deceleration-phase Rayleigh–Taylor instability of imploding inertial confinement fusion capsules
journal, December 2001

  • Betti, R.; Umansky, M.; Lobatchev, V.
  • Physics of Plasmas, Vol. 8, Issue 12
  • DOI: 10.1063/1.1412006

Hydrodynamic and Hydromagnetic Stability
journal, March 1962

  • Chandrasekhar, S.; Gillis, J.
  • Physics Today, Vol. 15, Issue 3
  • DOI: 10.1063/1.3058072

Numerical simulations of Rayleigh–Taylor and Richtmyer–Meshkov instability using MAH-3 code
journal, July 2004

  • Anuchina, N. N.; Volkov, V. I.; Gordeychuk, V. A.
  • Journal of Computational and Applied Mathematics, Vol. 168, Issue 1-2
  • DOI: 10.1016/j.cam.2003.06.008

Self-consistent Analytical Model of the Rayleigh-Taylor Instability in Inertial Confinement Fusion
journal, November 1994


Symmetric Set of Transport Coefficients for Collisional Magnetized Plasma
journal, February 2021


The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmas
journal, May 2013

  • Srinivasan, Bhuvana; Tang, Xian-Zhu
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803092

Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation
journal, January 1986

  • Epperlein, E. M.; Haines, M. G.
  • Physics of Fluids, Vol. 29, Issue 4
  • DOI: 10.1063/1.865901

Magnetically Assisted Fast Ignition
journal, January 2015


Burn regimes in the hydrodynamic scaling of perturbed inertial confinement fusion hotspots
journal, June 2019


Enhancing performance of magnetized liner inertial fusion at the Z facility
journal, November 2018

  • Slutz, S. A.; Gomez, M. R.; Hansen, S. B.
  • Physics of Plasmas, Vol. 25, Issue 11
  • DOI: 10.1063/1.5054317

Nonlinear evolution of the magnetohydrodynamic Rayleigh-Taylor instability
journal, September 2007

  • Stone, James M.; Gardiner, Thomas
  • Physics of Fluids, Vol. 19, Issue 9
  • DOI: 10.1063/1.2767666

Magnetic field generation from composition gradients in inertial confinement fusion fuel
journal, October 2020

  • Sadler, James D.; Li, Hui; Flippo, Kirk A.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378, Issue 2184
  • DOI: 10.1098/rsta.2020.0045

The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion
journal, June 2017

  • Perkins, L. J.; Ho, D. D. -M; Logan, B. G.
  • Physics of Plasmas, Vol. 24, Issue 6
  • DOI: 10.1063/1.4985150

High-Gain Magnetized Inertial Fusion
journal, January 2012


X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches
journal, November 2004

  • Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.
  • Plasma Physics and Controlled Fusion, Vol. 46, Issue 12B
  • DOI: 10.1088/0741-3335/46/12B/039

Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

Diagnostic signatures of performance degrading perturbations in inertial confinement fusion implosions
journal, December 2018

  • McGlinchey, K.; Appelbe, B. D.; Crilly, A. J.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5064504

Laser-driven magnetized liner inertial fusion on OMEGA
journal, May 2017

  • Barnak, D. H.; Davies, J. R.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982692

The evolution of magnetic tower jets in the laboratory
journal, May 2007

  • Ciardi, A.; Lebedev, S. V.; Frank, A.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2436479

Integrated simulation of magnetic-field-assist fast ignition laser fusion
journal, November 2016


Exploring extreme magnetization phenomena in directly driven imploding cylindrical targets
journal, January 2022

  • Walsh, C. A.; Florido, R.; Bailly-Grandvaux, M.
  • Plasma Physics and Controlled Fusion, Vol. 64, Issue 2
  • DOI: 10.1088/1361-6587/ac3f25

Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields
journal, July 2013

  • Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816813

Laser-driven magnetized liner inertial fusion
journal, June 2017

  • Davies, J. R.; Barnak, D. H.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 6
  • DOI: 10.1063/1.4984779

The Braginskii model of the Rayleigh–Taylor instability. I. Effects of self-generated magnetic fields and thermal conduction in two dimensions
journal, December 2013


Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators
journal, February 2016

  • Slutz, S. A.; Stygar, W. A.; Gomez, M. R.
  • Physics of Plasmas, Vol. 23, Issue 2
  • DOI: 10.1063/1.4941100

Implosion dynamics of triple-nozzle gas-puff z pinches on COBRA
journal, February 2021

  • Lavine, E. S.; Rocco, S. V.; Banasek, J. T.
  • Physics of Plasmas, Vol. 28, Issue 2
  • DOI: 10.1063/5.0030936

Magnetic Signatures of Radiation-Driven Double Ablation Fronts
journal, September 2020