DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode

Abstract

Abstract Layered transition‐metal (TM) oxides are ideal hosts for Li + charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle life of sodium‐ion batteries. Herein a Ti/Mg co‐doping strategy for a model P2‐Na 2/3 Ni 1/3 Mn 2/3 O 2 cathode material is put forward to activate charge compensation through highly hybridized O 2 p TM 3 d covalent bonds. In this way, the interlayer OO electrostatic repulsion is weakened upon deeply charging, which strongly affects the systematic total energy that transforms the striking P2–O2 interlayer contraction into a moderate solid‐solution‐type evolution. Accordingly, the cycling stability of the codoped cathode material is improved superiorly over the pristine sample. This study starts a perspective way of optimizing the sodium layered cathodes by rational structural design coupling electrochemical reactions, which can be extended to widespread battery researches.

Authors:
 [1];  [2];  [1];  [1];  [1];  [3];  [4];  [1];  [4];  [4];  [5];  [6];  [7];  [8];  [9]; ORCiD logo [10]
  1. Department of Physics City University of Hong Kong Hong Kong 999077 P. R. China
  2. Center of Hydrogen Science Shanghai Jiao Tong University Shanghai 200240 P. R. China, Innovation Center for Future Materials Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University Shanghai 201203 P. R. China, The State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China, Department of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
  3. School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
  4. X‐Ray Science Division Argonne National Laboratory Argonne IL 60439 USA
  5. College of Physics and Materials Science Tianjin Normal University Tianjin 300387 P. R. China
  6. School of Materials Science and Engineering Tianjin University Tianjin 300072 P. R. China
  7. School of Material Science and Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
  8. Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
  9. School of Material Science and Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China, Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China
  10. Department of Physics City University of Hong Kong Hong Kong 999077 P. R. China, Center for Neutron Scattering City University of Hong Kong Hong Kong 999077 P. R. China, Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China, Hong Kong Institute for Clean Energy City University of Hong Kong Hong Kong 999077 P. R. China
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Key Research and Development Program of China; Science, Technology and Innovation Commission of Shenzhen Municipality; City University of Hong Kong
OSTI Identifier:
1859765
Alternate Identifier(s):
OSTI ID: 1859766; OSTI ID: 1962072
Grant/Contract Number:  
AC02-06CH11357; SC0019300; 2020YFA0406203; SGDX2019081623240948; JCYJ20200109105618137; 21307019
Resource Type:
Published Article
Journal Name:
Advanced Science
Additional Journal Information:
Journal Name: Advanced Science Journal Volume: 9 Journal Issue: 16; Journal ID: ISSN 2198-3844
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
25 ENERGY STORAGE; battery NMC; high-voltage structural stability; in situ synchrotron characterizations; layered transition-metal oxide cathodes; oxygen charge compensation; sodium-ion battery

Citation Formats

Zhu, He, Yao, Zhenpeng, Zhu, Hekang, Huang, Yalan, Zhang, Jian, Li, Cheng Chao, Wiaderek, Kamila M., Ren, Yang, Sun, Cheng‐Jun, Zhou, Hua, Fan, Longlong, Chen, Yanan, Xia, Hui, Gu, Lin, Lan, Si, and Liu, Qi. Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode. Germany: N. p., 2022. Web. doi:10.1002/advs.202200498.
Zhu, He, Yao, Zhenpeng, Zhu, Hekang, Huang, Yalan, Zhang, Jian, Li, Cheng Chao, Wiaderek, Kamila M., Ren, Yang, Sun, Cheng‐Jun, Zhou, Hua, Fan, Longlong, Chen, Yanan, Xia, Hui, Gu, Lin, Lan, Si, & Liu, Qi. Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode. Germany. https://doi.org/10.1002/advs.202200498
Zhu, He, Yao, Zhenpeng, Zhu, Hekang, Huang, Yalan, Zhang, Jian, Li, Cheng Chao, Wiaderek, Kamila M., Ren, Yang, Sun, Cheng‐Jun, Zhou, Hua, Fan, Longlong, Chen, Yanan, Xia, Hui, Gu, Lin, Lan, Si, and Liu, Qi. Mon . "Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode". Germany. https://doi.org/10.1002/advs.202200498.
@article{osti_1859765,
title = {Unblocking Oxygen Charge Compensation for Stabilized High‐Voltage Structure in P2‐Type Sodium‐Ion Cathode},
author = {Zhu, He and Yao, Zhenpeng and Zhu, Hekang and Huang, Yalan and Zhang, Jian and Li, Cheng Chao and Wiaderek, Kamila M. and Ren, Yang and Sun, Cheng‐Jun and Zhou, Hua and Fan, Longlong and Chen, Yanan and Xia, Hui and Gu, Lin and Lan, Si and Liu, Qi},
abstractNote = {Abstract Layered transition‐metal (TM) oxides are ideal hosts for Li + charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle life of sodium‐ion batteries. Herein a Ti/Mg co‐doping strategy for a model P2‐Na 2/3 Ni 1/3 Mn 2/3 O 2 cathode material is put forward to activate charge compensation through highly hybridized O 2 p TM 3 d covalent bonds. In this way, the interlayer OO electrostatic repulsion is weakened upon deeply charging, which strongly affects the systematic total energy that transforms the striking P2–O2 interlayer contraction into a moderate solid‐solution‐type evolution. Accordingly, the cycling stability of the codoped cathode material is improved superiorly over the pristine sample. This study starts a perspective way of optimizing the sodium layered cathodes by rational structural design coupling electrochemical reactions, which can be extended to widespread battery researches.},
doi = {10.1002/advs.202200498},
journal = {Advanced Science},
number = 16,
volume = 9,
place = {Germany},
year = {Mon Mar 28 00:00:00 EDT 2022},
month = {Mon Mar 28 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/advs.202200498

Save / Share:

Works referenced in this record:

Charge-Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation
journal, October 2017

  • Kondrakov, Aleksandr O.; Geßwein, Holger; Galdina, Kristina
  • The Journal of Physical Chemistry C, Vol. 121, Issue 44
  • DOI: 10.1021/acs.jpcc.7b06598

Review—Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials
journal, January 2015

  • Clément, Raphaële J.; Bruce, Peter G.; Grey, Clare P.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0201514jes

Bridging Structural Inhomogeneity to Functionality: Pair Distribution Function Methods for Functional Materials Development
journal, January 2021


Nature of the “Z”-phase in layered Na-ion battery cathodes
journal, January 2019

  • Somerville, James W.; Sobkowiak, Adam; Tapia-Ruiz, Nuria
  • Energy & Environmental Science, Vol. 12, Issue 7
  • DOI: 10.1039/C8EE02991A

P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries
journal, April 2015

  • Wang, Yuesheng; Xiao, Ruijuan; Hu, Yong-Sheng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7954

First-Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li-Mg-N-H System
journal, September 2007

  • R. Akbarzadeh, A.; Ozoliņš, V.; Wolverton, C.
  • Advanced Materials, Vol. 19, Issue 20
  • DOI: 10.1002/adma.200700843

X-ray Photoemission Spectroscopy Study of Cationic and Anionic Redox Processes in High-Capacity Li-Ion Battery Layered-Oxide Electrodes
journal, January 2016

  • Foix, Dominique; Sathiya, Mariyappan; McCalla, Eric
  • The Journal of Physical Chemistry C, Vol. 120, Issue 2
  • DOI: 10.1021/acs.jpcc.5b10475

Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
journal, January 2012

  • Palomares, Verónica; Serras, Paula; Villaluenga, Irune
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee02781j

High Voltage Mg-Doped Na 0.67 Ni 0.3– x Mg x Mn 0.7 O 2 ( x = 0.05, 0.1) Na-Ion Cathodes with Enhanced Stability and Rate Capability
journal, July 2016


In Situ X-Ray Diffraction Study of P2-Na[sub 2/3][Ni[sub 1/3]Mn[sub 2/3]]O[sub 2]
journal, January 2001

  • Lu, Zhonghua; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 148, Issue 11
  • DOI: 10.1149/1.1407247

Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes
journal, December 2017


Enhanced Performance of P2-Na 0.66 (Mn 0.54 Co 0.13 Ni 0.13 )O 2 Cathode for Sodium-Ion Batteries by Ultrathin Metal Oxide Coatings via Atomic Layer Deposition
journal, August 2017

  • Kaliyappan, Karthikeyan; Liu, Jian; Xiao, Biwei
  • Advanced Functional Materials, Vol. 27, Issue 37
  • DOI: 10.1002/adfm.201701870

Li-ion battery materials: present and future
journal, June 2015


An advanced cathode for Na-ion batteries with high rate and excellent structural stability
journal, January 2013

  • Lee, Dae Hoe; Xu, Jing; Meng, Ying Shirley
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 9
  • DOI: 10.1039/c2cp44467d

1D to 2D Na + Ion Diffusion Inherently Linked to Structural Transitions in Na 0.7 CoO 2
journal, June 2013


Systematic XPS studies of metal oxides, hydroxides and peroxides
journal, January 2000

  • Dupin, Jean-Charles; Gonbeau, Danielle; Vinatier, Philippe
  • Physical Chemistry Chemical Physics, Vol. 2, Issue 6
  • DOI: 10.1039/a908800h

Improved electrochemical performance of Na 0.67 MnO 2 through Ni and Mg substitution
journal, January 2015

  • Hemalatha, K.; Jayakumar, M.; Bera, Parthasarathi
  • Journal of Materials Chemistry A, Vol. 3, Issue 42
  • DOI: 10.1039/C5TA06361B

P′2-Na 2/3 Mn 0.9 Me 0.1 O 2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): Correlation between Orthorhombic Distortion and Electrochemical Property
journal, October 2017


P2-type Na 0.53 MnO 2 nanorods with superior rate capabilities as advanced cathode material for sodium ion batteries
journal, May 2017


Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process
journal, February 2019


An ab Initio Hartree−Fock Study of the Cubic and Tetragonal Phases of Bulk Tungsten Trioxide
journal, January 1996

  • Corà, Furio; Patel, Atul; Harrison, Nicholas M.
  • Journal of the American Chemical Society, Vol. 118, Issue 48
  • DOI: 10.1021/ja961514u

Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties
journal, January 2014

  • Islam, M. Saiful; Fisher, Craig A. J.
  • Chem. Soc. Rev., Vol. 43, Issue 1
  • DOI: 10.1039/C3CS60199D

Sustainability guardrails for energy scenarios of the global energy transition
journal, August 2018

  • Child, Michael; Koskinen, Otto; Linnanen, Lassi
  • Renewable and Sustainable Energy Reviews, Vol. 91
  • DOI: 10.1016/j.rser.2018.03.079

Structure of the high voltage phase of layered P2-Na 2/3−z [Mn 1/2 Fe 1/2 ]O 2 and the positive effect of Ni substitution on its stability
journal, January 2015

  • Talaie, Elahe; Duffort, Victor; Smith, Hillary L.
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE01365H

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Sodium-Ion Batteries: Building Effective Layered Cathode Materials with Long-Term Cycling by Modifying the Surface via Sodium Phosphate
journal, February 2018

  • Jo, Jae Hyeon; Choi, Ji Ung; Konarov, Aishuak
  • Advanced Functional Materials, Vol. 28, Issue 14
  • DOI: 10.1002/adfm.201705968

A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries
journal, January 2015

  • Han, Man Huon; Gonzalo, Elena; Singh, Gurpreet
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE03192J

The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410376

Revisiting the Na 2/3 Ni 1/3 Mn 2/3 O 2 Cathode: Oxygen Redox Chemistry and Oxygen Release Suppression
journal, January 2020


Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries
journal, January 2013

  • Yuan, Dingding; He, Wei; Pei, Feng
  • Journal of Materials Chemistry A, Vol. 1, Issue 12
  • DOI: 10.1039/c3ta01430d

Incorporating first-principles energetics in computational thermodynamics approaches
journal, May 2002


Surface Characterization of Electrodes from High Power Lithium-Ion Batteries
journal, January 2002

  • Andersson, A. M.; Abraham, D. P.; Haasch, R.
  • Journal of The Electrochemical Society, Vol. 149, Issue 10
  • DOI: 10.1149/1.1505636

Spontaneous Strain Buffer Enables Superior Cycling Stability in Single-Crystal Nickel-Rich NCM Cathode
journal, November 2021


Ultralow‐Strain Zn‐Substituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage
journal, March 2020

  • Wang, Yanxia; Wang, Liguang; Zhu, He
  • Advanced Functional Materials, Vol. 30, Issue 13
  • DOI: 10.1002/adfm.201910327

Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes
journal, December 2019


High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries
journal, January 2017

  • Ortiz-Vitoriano, Nagore; Drewett, Nicholas E.; Gonzalo, Elena
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C7EE00566K

Structurally stable Mg-doped P2-Na 2/3 Mn 1−y Mg y O 2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies
journal, January 2016

  • Clément, Raphaële J.; Billaud, Juliette; Robert Armstrong, A.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01750A

Insight into the capacity decay mechanism of cycled LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathodes via in situ x-ray diffraction
journal, April 2021


Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
journal, April 2018


Between Scylla and Charybdis: Balancing Among Structural Stability and Energy Density of Layered NCM Cathode Materials for Advanced Lithium-Ion Batteries
journal, November 2017

  • de Biasi, Lea; Kondrakov, Aleksandr O.; Geßwein, Holger
  • The Journal of Physical Chemistry C, Vol. 121, Issue 47
  • DOI: 10.1021/acs.jpcc.7b06363

Recent Progress in Electrode Materials for Sodium-Ion Batteries
journal, July 2016

  • Kim, Hyungsub; Kim, Haegyeom; Ding, Zhang
  • Advanced Energy Materials, Vol. 6, Issue 19
  • DOI: 10.1002/aenm.201600943

Suppressing the P2-O2 Phase Transition of Na 0.67 Mn 0.67 Ni 0.33 O 2 by Magnesium Substitution for Improved Sodium-Ion Batteries
journal, May 2016


Structure and Charge Regulation Strategy Enabling Superior Cyclability for Ni‐Rich Layered Cathode Materials
journal, October 2021


Improvement of the Cathode Electrolyte Interphase on P2-Na 2/3 Ni 1/3 Mn 2/3 O 2 by Atomic Layer Deposition
journal, July 2017

  • Alvarado, Judith; Ma, Chuze; Wang, Shen
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 31
  • DOI: 10.1021/acsami.7b05326

P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
journal, April 2012

  • Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3309

Na + /vacancy disordering promises high-rate Na-ion batteries
journal, March 2018


In Situ Probing Multiple-Scale Structures of Energy Materials for Li-Ion Batteries
journal, May 2019


Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage
journal, April 2017


Electrochemical and Structural Study of Layered P2-Type Na 2/3 Ni 1/3 Mn 2/3 O 2 as Cathode Material for Sodium-Ion Battery
journal, January 2015

  • Wen, Yanfen; Wang, Bei; Zeng, Guang
  • Chemistry - An Asian Journal, Vol. 10, Issue 3
  • DOI: 10.1002/asia.201403134

Modulating the Surface Ligand Orientation for Stabilized Anionic Redox in Li‐Rich Oxide Cathodes
journal, March 2021


Structural classification and properties of the layered oxides
journal, January 1980


Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox
journal, December 2017