DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamic Phase Alignment in Inertial Alfvén Turbulence

Abstract

In weakly collisional plasma environments with sufficiently low electron beta, Alfvénic turbulence transforms into inertial Alfvénic turbulence at scales below the electron skin depth, kde ≳ 1. We argue that, in inertial Alfvénic turbulence, both energy and generalized kinetic helicity exhibit direct cascades. We demonstrate that the two cascades are compatible due to the existence of a strong scale dependence of the phase alignment angle between velocity and magnetic field fluctuations, with the phase alignment angle scaling as cos αk ∝ $$k$$$^{–1}_{⊥}$$. The kinetic and magnetic energy spectra scale as ∝ $$k$$$^{–5/3}_{⊥}$$ and ∝ $$k$$$^{–11/3}_{⊥}$$, respectively. As a result of the dual direct cascade, the generalized helicity spectrum scales as ∝ $$k$$$^{–5/3}_{⊥}$$, implying progressive balancing of the turbulence as the cascade proceeds to smaller scales in the kde >> 1 range. Turbulent eddies exhibit a phase-space anisotropy k ∝ $$k$$$^{5/3}_{⊥}$$, consistent with critically balanced inertial Alfvén fluctuations. Furthermore, our results may be applicable to a variety of geophysical, space, and astrophysical environments, including the Earth’s magnetosheath and ionosphere, solar corona, and nonrelativistic pair plasmas, as well as to strongly rotating nonionized fluids.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); ETH Zurich (Switzerland)
  3. Univ. of Wisconsin, Madison, WI (United States); Space Science Institute, Boulder, CO (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Univ. of Wisconsin, Madison, WI (United States); Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1850023
Grant/Contract Number:  
FG02-91ER54109; SC0018266; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 125; Journal Issue: 26; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Physics; Alfvén waves; Nonlinear phenomena in plasmas; Plasma turbulence; Turbulence; Earth's magnetosphere; Magnetized plasma; Solar plasma

Citation Formats

Milanese, Lucio M., Loureiro, Nuno F., Daschner, Maximilian, and Boldyrev, Stanislav. Dynamic Phase Alignment in Inertial Alfvén Turbulence. United States: N. p., 2020. Web. doi:10.1103/physrevlett.125.265101.
Milanese, Lucio M., Loureiro, Nuno F., Daschner, Maximilian, & Boldyrev, Stanislav. Dynamic Phase Alignment in Inertial Alfvén Turbulence. United States. https://doi.org/10.1103/physrevlett.125.265101
Milanese, Lucio M., Loureiro, Nuno F., Daschner, Maximilian, and Boldyrev, Stanislav. Mon . "Dynamic Phase Alignment in Inertial Alfvén Turbulence". United States. https://doi.org/10.1103/physrevlett.125.265101. https://www.osti.gov/servlets/purl/1850023.
@article{osti_1850023,
title = {Dynamic Phase Alignment in Inertial Alfvén Turbulence},
author = {Milanese, Lucio M. and Loureiro, Nuno F. and Daschner, Maximilian and Boldyrev, Stanislav},
abstractNote = {In weakly collisional plasma environments with sufficiently low electron beta, Alfvénic turbulence transforms into inertial Alfvénic turbulence at scales below the electron skin depth, k⊥de ≳ 1. We argue that, in inertial Alfvénic turbulence, both energy and generalized kinetic helicity exhibit direct cascades. We demonstrate that the two cascades are compatible due to the existence of a strong scale dependence of the phase alignment angle between velocity and magnetic field fluctuations, with the phase alignment angle scaling as cos αk ∝ $k$$^{–1}_{⊥}$. The kinetic and magnetic energy spectra scale as ∝ $k$$^{–5/3}_{⊥}$ and ∝ $k$$^{–11/3}_{⊥}$, respectively. As a result of the dual direct cascade, the generalized helicity spectrum scales as ∝ $k$$^{–5/3}_{⊥}$, implying progressive balancing of the turbulence as the cascade proceeds to smaller scales in the k⊥de >> 1 range. Turbulent eddies exhibit a phase-space anisotropy k∥ ∝ $k$$^{5/3}_{⊥}$, consistent with critically balanced inertial Alfvén fluctuations. Furthermore, our results may be applicable to a variety of geophysical, space, and astrophysical environments, including the Earth’s magnetosheath and ionosphere, solar corona, and nonrelativistic pair plasmas, as well as to strongly rotating nonionized fluids.},
doi = {10.1103/physrevlett.125.265101},
journal = {Physical Review Letters},
number = 26,
volume = 125,
place = {United States},
year = {Mon Dec 21 00:00:00 EST 2020},
month = {Mon Dec 21 00:00:00 EST 2020}
}

Works referenced in this record:

The New Solar Corona
journal, September 2001

  • Aschwanden, Markus J.; Poland, Arthur I.; Rabin, Douglas M.
  • Annual Review of Astronomy and Astrophysics, Vol. 39, Issue 1
  • DOI: 10.1146/annurev.astro.39.1.175

Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks
journal, January 1976


Plasma Turbulence
journal, January 1990


Helicity statistics in homogeneous and isotropic turbulence and turbulence models
journal, February 2017


The multi-scale nature of the solar wind
journal, December 2019

  • Verscharen, Daniel; Klein, Kristopher G.; Maruca, Bennett A.
  • Living Reviews in Solar Physics, Vol. 16, Issue 1
  • DOI: 10.1007/s41116-019-0021-0

Day the solar wind almost disappeared: Magnetic field fluctuations, wave refraction and dissipation
journal, September 2001

  • Smith, Charles W.; Mullan, Dermott J.; Ness, Norman F.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A9
  • DOI: 10.1029/2001JA000022

On the Energy Spectrum of Strong Magnetohydrodynamic Turbulence
journal, October 2012


Observation of kinetic Alfvén waves by the FREJA spacecraft
journal, August 1994

  • Louarn, P.; Wahlund, J. E.; Chust, T.
  • Geophysical Research Letters, Vol. 21, Issue 17
  • DOI: 10.1029/94GL00882

Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet: ION TO ELECTRON TEMPERATURE RATIO
journal, August 2012

  • Wang, Chih-Ping; Gkioulidou, Matina; Lyons, Larry R.
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A8
  • DOI: 10.1029/2012JA017658

Theory of Incompressible Magnetohydrodynamic Turbulence with Scale-Dependent Alignment and Cross-Helicity
journal, July 2010


Nature of Kinetic Scale Turbulence in the Earth's Magnetosheath
journal, June 2017


Coronal Holes
journal, January 2009


The Magnetosheath
journal, June 2005

  • Lucek, E. A.; Constantinescu, D.; Goldstein, M. L.
  • Space Science Reviews, Vol. 118, Issue 1-4
  • DOI: 10.1007/s11214-005-3825-2

Cascades and transitions in turbulent flows
journal, November 2018


Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence
journal, August 2019

  • Sharma Pyakurel, P.; Shay, M. A.; Phan, T. D.
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5090403

The Anisotropy of Electron Magnetohydrodynamic Turbulence
journal, September 2004

  • Cho, Jungyeon; Lazarian, A.
  • The Astrophysical Journal, Vol. 615, Issue 1
  • DOI: 10.1086/425215

Inertial Alfvén wave induced turbulent spectra in aurora
journal, February 2014


Scaling of the Electron Dissipation Range of Solar wind Turbulence
journal, October 2013


Particle-in-cell Simulations of Electron and Ion Dissipation by Whistler Turbulence: Variations with Electron β
journal, January 2017


Critical balance in magnetohydrodynamic, rotating and stratified turbulence: towards a universal scaling conjecture
journal, March 2011


Coronal magnetic field and the plasma beta determined from radio and multiple satellite observations
journal, November 2014

  • Iwai, Kazumasa; Shibasaki, Kiyoto; Nozawa, Satoshi
  • Earth, Planets and Space, Vol. 66, Issue 1
  • DOI: 10.1186/s40623-014-0149-z

Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath
journal, May 2018


Theory and simulation of low-frequency plasma waves and comparison to Freja satellite observations
journal, November 1995

  • Seyler, C. E.; Wahlund, J. -E.; Holback, B.
  • Journal of Geophysical Research: Space Physics, Vol. 100, Issue A11
  • DOI: 10.1029/95JA02052

Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence
journal, January 1995

  • Goldreich, P.; Sridhar, S.
  • The Astrophysical Journal, Vol. 438
  • DOI: 10.1086/175121

Electron-only Reconnection in Kinetic-Alfvén Turbulence
journal, April 2020

  • Vega, Cristian; Roytershteyn, Vadim; Delzanno, Gian Luca
  • The Astrophysical Journal, Vol. 893, Issue 1
  • DOI: 10.3847/2041-8213/ab7eba

Role of reconnection in inertial kinetic-Alfvén turbulence
journal, August 2019


Lossless Positron Injection into a Magnetic Dipole Trap
journal, December 2018


Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas
journal, May 2015

  • Matthaeus, W. H.; Wan, Minping; Servidio, S.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2041
  • DOI: 10.1098/rsta.2014.0154

Statistical analysis of turbulence in the foreshock region and in the Earth’s magnetosheath
journal, May 2011


Intermittency in the Joint Cascade of Energy and Helicity
journal, May 2003


Viriato : A Fourier–Hermite spectral code for strongly magnetized fluid–kinetic plasma dynamics
journal, September 2016


The Solar Orbiter Radio and Plasma Waves (RPW) instrument
journal, September 2020


Injection of intense low-energy reactor-based positron beams into a supported magnetic dipole trap
journal, January 2020

  • Horn-Stanja, J.; Stenson, E. V.; Stoneking, M. R.
  • Plasma Research Express, Vol. 2, Issue 1
  • DOI: 10.1088/2516-1067/ab6f44

Turbulence in Magnetized Pair Plasmas
journal, October 2018


Identification of widespread turbulence of dispersive Alfvén waves
journal, January 2000

  • Stasiewicz, K.; Khotyaintsev, Y.; Berthomier, M.
  • Geophysical Research Letters, Vol. 27, Issue 2
  • DOI: 10.1029/1999GL010696

Ion-scale spectral break of solar wind turbulence at high and low beta
journal, November 2014

  • Chen, C. H. K.; Leung, L.; Boldyrev, S.
  • Geophysical Research Letters, Vol. 41, Issue 22
  • DOI: 10.1002/2014GL062009

Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas
journal, May 2009

  • Schekochihin, A. A.; Cowley, S. C.; Dorland, W.
  • The Astrophysical Journal Supplement Series, Vol. 182, Issue 1
  • DOI: 10.1088/0067-0049/182/1/310

Helicity cascades in fully developed isotropic turbulence
journal, January 1973


Properties of the Turbulence Associated with Electron-only Magnetic Reconnection in Earth’s Magnetosheath
journal, June 2019

  • Stawarz, J. E.; Eastwood, J. P.; Phan, T. D.
  • The Astrophysical Journal, Vol. 877, Issue 2
  • DOI: 10.3847/2041-8213/ab21c8

Reduced models for fluid flows with strong constraints
journal, June 2007

  • Julien, Keith; Knobloch, Edgar
  • Journal of Mathematical Physics, Vol. 48, Issue 6
  • DOI: 10.1063/1.2741042

Gyrofluid modeling and phenomenology of low- β e Alfvén wave turbulence
journal, April 2018

  • Passot, T.; Sulem, P. L.; Tassi, E.
  • Physics of Plasmas, Vol. 25, Issue 4
  • DOI: 10.1063/1.5022528

Evidence of a Cascade and Dissipation of Solar-Wind Turbulence at the Electron Gyroscale
journal, June 2009


Magnetohydrodynamic Turbulence
book, August 2009


Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas
journal, October 2011

  • Zocco, Alessandro; Schekochihin, Alexander A.
  • Physics of Plasmas, Vol. 18, Issue 10
  • DOI: 10.1063/1.3628639

Helicity Dynamics, Inverse, and Bidirectional Cascades in Fluid and Magnetohydrodynamic Turbulence: A Brief Review
journal, March 2019

  • Pouquet, A.; Rosenberg, D.; Stawarz, J. E.
  • Earth and Space Science, Vol. 6, Issue 3
  • DOI: 10.1029/2018EA000432

Solar Wind Turbulence and the Role of Ion Instabilities
journal, August 2013

  • Alexandrova, O.; Chen, C. H. K.; Sorriso-Valvo, L.
  • Space Science Reviews, Vol. 178, Issue 2-4
  • DOI: 10.1007/s11214-013-0004-8

Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas
journal, October 2011

  • Zocco, Alessandro; Schekochihin, Alexander A.
  • Physics of Plasmas, Vol. 18, Issue 10
  • DOI: 10.1063/1.3628639

Gyrofluid modeling and phenomenology of low- β e Alfvén wave turbulence
journal, April 2018

  • Passot, T.; Sulem, P. L.; Tassi, E.
  • Physics of Plasmas, Vol. 25, Issue 4
  • DOI: 10.1063/1.5022528

Injection of intense low-energy reactor-based positron beams into a supported magnetic dipole trap
journal, January 2020

  • Horn-Stanja, J.; Stenson, E. V.; Stoneking, M. R.
  • Plasma Research Express, Vol. 2, Issue 1
  • DOI: 10.1088/2516-1067/ab6f44

Electron-only Reconnection in Kinetic-Alfvén Turbulence
journal, April 2020

  • Vega, Cristian; Roytershteyn, Vadim; Delzanno, Gian Luca
  • The Astrophysical Journal, Vol. 893, Issue 1
  • DOI: 10.3847/2041-8213/ab7eba

Solar Wind Turbulence and the Role of Ion Instabilities
text, January 2013


Cascades and transitions in turbulent flows
text, January 2018


Works referencing / citing this record:

Plasma Dynamics in Low-Electron-Beta Environments
journal, May 2021

  • Boldyrev, Stanislav; Loureiro, Nuno F.; Roytershteyn, Vadim
  • Frontiers in Astronomy and Space Sciences, Vol. 8
  • DOI: 10.3389/fspas.2021.621040