DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of Intermediates and Products from the Dehydrogenation of Mg(BH4)2

Abstract

The thermodynamic properties of key compounds, Mg(B3H8)2, MgB2H6, MgB10H10, Mg(B11H14)2, Mg3(B3H6)2, and MgB12H12, proposed to be formed in the release of hydrogen from magnesium borohydride Mg(BH4)2 and uptake of hydrogen by MgB2, have been investigated using solid–state density functional theory (DFT) calculations. Further, more accurate treatment of cell–size effects to the entropies were also investigated, in order to improve the accuracy of the thermodynamic properties of complex borohydrides. We find that the zero–point energy corrections can lower the electronic energies of reaction by 20–30 kJ/(mol H2) for these intermediates, while adding the thermal and entropy contributions results in the total decrease up to ~50 kJ/(mol H2). Although our treatment lowers the calculated formation energy of Mg(B3H8)2, it is still too high to explain the experimental observation of B3H8. We discuss possible reasons for this disparity and propose that the formation of B3H8 and H in a disordered amorphous phase has a large energy difference compared to the phase–separated Mg(B3H8)2 and MgH2 considered in calculations. Comparison of the experimental and NMR chemical shifts calculated within a DFT approach for known species Mg(BH4)2, Mg(B3H8)2, Mg(B11H14)2, MgB10H10 and MgB12H12 provides validation for predicting the chemical shifts of the other compounds which are yetmore » to be confirmed experimentally. These include MgB2H6 and the proposed tri–anion species Mg3(B3H6)2 that both have favorable thermodynamics for reversible hydrogen storage in Mg(BH4)2 without the formation of MgH2 as a co–product which could phase–separate and inhibit rehydrogenation.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Minnesota State Univ., Moorhead, MN (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office; USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1846392
Report Number(s):
PNNL-SA-168448
Journal ID: ISSN 1089-5639
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 126; Journal Issue: 3; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemical reactions; Boron; Anions; Chemical calculations; Organic reactions

Citation Formats

Nayyar, Iffat H., Ginovska, Bojana, Bowden, Mark E., Edvenson, Gary M., Tran, Ba L., and Autrey, S. Thomas. Analysis of Intermediates and Products from the Dehydrogenation of Mg(BH4)2. United States: N. p., 2022. Web. doi:10.1021/acs.jpca.1c09690.
Nayyar, Iffat H., Ginovska, Bojana, Bowden, Mark E., Edvenson, Gary M., Tran, Ba L., & Autrey, S. Thomas. Analysis of Intermediates and Products from the Dehydrogenation of Mg(BH4)2. United States. https://doi.org/10.1021/acs.jpca.1c09690
Nayyar, Iffat H., Ginovska, Bojana, Bowden, Mark E., Edvenson, Gary M., Tran, Ba L., and Autrey, S. Thomas. Fri . "Analysis of Intermediates and Products from the Dehydrogenation of Mg(BH4)2". United States. https://doi.org/10.1021/acs.jpca.1c09690. https://www.osti.gov/servlets/purl/1846392.
@article{osti_1846392,
title = {Analysis of Intermediates and Products from the Dehydrogenation of Mg(BH4)2},
author = {Nayyar, Iffat H. and Ginovska, Bojana and Bowden, Mark E. and Edvenson, Gary M. and Tran, Ba L. and Autrey, S. Thomas},
abstractNote = {The thermodynamic properties of key compounds, Mg(B3H8)2, MgB2H6, MgB10H10, Mg(B11H14)2, Mg3(B3H6)2, and MgB12H12, proposed to be formed in the release of hydrogen from magnesium borohydride Mg(BH4)2 and uptake of hydrogen by MgB2, have been investigated using solid–state density functional theory (DFT) calculations. Further, more accurate treatment of cell–size effects to the entropies were also investigated, in order to improve the accuracy of the thermodynamic properties of complex borohydrides. We find that the zero–point energy corrections can lower the electronic energies of reaction by 20–30 kJ/(mol H2) for these intermediates, while adding the thermal and entropy contributions results in the total decrease up to ~50 kJ/(mol H2). Although our treatment lowers the calculated formation energy of Mg(B3H8)2, it is still too high to explain the experimental observation of B3H8–. We discuss possible reasons for this disparity and propose that the formation of B3H8– and H– in a disordered amorphous phase has a large energy difference compared to the phase–separated Mg(B3H8)2 and MgH2 considered in calculations. Comparison of the experimental and NMR chemical shifts calculated within a DFT approach for known species Mg(BH4)2, Mg(B3H8)2, Mg(B11H14)2, MgB10H10 and MgB12H12 provides validation for predicting the chemical shifts of the other compounds which are yet to be confirmed experimentally. These include MgB2H6 and the proposed tri–anion species Mg3(B3H6)2 that both have favorable thermodynamics for reversible hydrogen storage in Mg(BH4)2 without the formation of MgH2 as a co–product which could phase–separate and inhibit rehydrogenation.},
doi = {10.1021/acs.jpca.1c09690},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 3,
volume = 126,
place = {United States},
year = {Fri Jan 14 00:00:00 EST 2022},
month = {Fri Jan 14 00:00:00 EST 2022}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Structure of unsolvated magnesium borohydride Mg(BH 4 ) 2
journal, July 2007

  • Her, Jae-Hyuk; Stephens, Peter W.; Gao, Yan
  • Acta Crystallographica Section B Structural Science, Vol. 63, Issue 4
  • DOI: 10.1107/S0108768107022665

Interplay between the Reorientational Dynamics of the B 3 H 8 Anion and the Structure in KB 3 H 8
journal, February 2021

  • Andersson, M. S.; Grinderslev, J. B.; Chen, X. -M.
  • The Journal of Physical Chemistry C, Vol. 125, Issue 7
  • DOI: 10.1021/acs.jpcc.0c10186

Projector augmented-wave method
journal, December 1994


Ab initio characterization of the flexural anion found in the reversible dehydrogenation
journal, July 2011


NWChem: Past, present, and future
journal, May 2020

  • Aprà, E.; Bylaska, E. J.; de Jong, W. A.
  • The Journal of Chemical Physics, Vol. 152, Issue 18
  • DOI: 10.1063/5.0004997

Formation of [BH3]2- and [B2H6]2- From the Homogeneous Reduction of B2H6
journal, December 1994

  • Godfroid, Robert A.; Hill, Tara G.; Onak, Thomas P.
  • Journal of the American Chemical Society, Vol. 116, Issue 26
  • DOI: 10.1021/ja00105a083

First-Principles Study of Experimental and Hypothetical Mg(BH 4 ) 2 Crystal Structures
journal, February 2008

  • Dai, Bing; Sholl, David S.; Johnson, J. Karl
  • The Journal of Physical Chemistry C, Vol. 112, Issue 11
  • DOI: 10.1021/jp710154t

Effects of Glymes on the Distribution of Mg(B10H10) and Mg(B12H12) from the Thermolysis of Mg(BH4)2
journal, May 2021


NMR study of proton and boron dynamics in KB 3 H 8
journal, May 1980


High yield preparation of the tetradecahydroundecaborate(1-) anion, [B11H14]-, from pentaborane(9)
journal, October 1987

  • Hosmane, Narayan S.; Wermer, Joseph R.; Hong, Zhu
  • Inorganic Chemistry, Vol. 26, Issue 21
  • DOI: 10.1021/ic00268a045

The role of energy storage in deep decarbonization of electricity production
journal, July 2019

  • Arbabzadeh, Maryam; Sioshansi, Ramteen; Johnson, Jeremiah X.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-11161-5

Controllable decomposition of Ca(BH 4 ) 2 for reversible hydrogen storage
journal, January 2017

  • Yan, Y.; Rentsch, D.; Remhof, A.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 11
  • DOI: 10.1039/C7CP00448F

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Theoretical Prediction of Metastable Intermediates in the Decomposition of Mg(BH 4 ) 2
journal, May 2012

  • Zhang, Yongsheng; Majzoub, Eric; Ozoliņš, Vidvuds
  • The Journal of Physical Chemistry C, Vol. 116, Issue 19
  • DOI: 10.1021/jp302303z

Structure and hindered motion of B3H8 anions in solids: An NMR study
journal, May 1975


Selective Reversible Hydrogenation of Mg(B 3 H 8 ) 2 /MgH 2 to Mg(BH 4 ) 2 : Pathway to Reversible Borane-Based Hydrogen Storage?
journal, March 2015


Porous and Dense Magnesium Borohydride Frameworks: Synthesis, Stability, and Reversible Absorption of Guest Species
journal, September 2011

  • Filinchuk, Yaroslav; Richter, Bo; Jensen, Torben R.
  • Angewandte Chemie International Edition, Vol. 50, Issue 47
  • DOI: 10.1002/anie.201100675

NMR Confirmation for Formation of [B 12 H 12 ] 2- Complexes during Hydrogen Desorption from Metal Borohydrides
journal, March 2008

  • Hwang, Son-Jong; Bowman, Robert C.; Reiter, Joseph W.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 9
  • DOI: 10.1021/jp710894t

In-Situ X-ray Diffraction Study of γ-Mg(BH 4 ) 2 Decomposition
journal, July 2012

  • Paskevicius, Mark; Pitt, Mark P.; Webb, Colin J.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 29
  • DOI: 10.1021/jp302898k

van der Waals interactions in the ground state of Mg(BH 4 ) 2 from density functional theory
journal, June 2011


A new phase in the decomposition of Mg(BH4)2: first-principles simulated annealing
journal, January 2009

  • van Setten, M. J.; Lohstroh, W.; Fichtner, M.
  • Journal of Materials Chemistry, Vol. 19, Issue 38
  • DOI: 10.1039/b908821k

Supercritical N 2 Processing as a Route to the Clean Dehydrogenation of Porous Mg(BH 4 ) 2
journal, May 2014

  • Stadie, Nicholas P.; Callini, Elsa; Richter, Bo
  • Journal of the American Chemical Society, Vol. 136, Issue 23
  • DOI: 10.1021/ja503715z

Lewis Base Complexes of Magnesium Borohydride: Enhanced Kinetics and Product Selectivity upon Hydrogen Release
journal, December 2017


Hydrogen at Scale (H 2 @Scale): Key to a Clean, Economic, and Sustainable Energy System
journal, January 2018

  • Pivovar, Bryan; Rustagi, Neha; Satyapal, Sunita
  • The Electrochemical Society Interface, Vol. 27, Issue 1
  • DOI: 10.1149/2.F04181if

The question of fluxional behavior in octahydrotriborate(1-) and pentaborane(11)
journal, March 1978

  • Pepperberg, I. M.; Dixon, D. A.; Lipscomb, W. N.
  • Inorganic Chemistry, Vol. 17, Issue 3
  • DOI: 10.1021/ic50181a014

Morphology‐Dependent Stability of Complex Metal Hydrides and Their Intermediates Using First‐Principles Calculations
journal, March 2019

  • Kang, ShinYoung; Heo, Tae Wook; Allendorf, Mark D.
  • ChemPhysChem, Vol. 20, Issue 10
  • DOI: 10.1002/cphc.201801132

Hydrogen technologies for energy storage: A perspective
journal, July 2020

  • Stetson, Ned; Wieliczko, Marika
  • MRS Energy & Sustainability, Vol. 7, Issue 1
  • DOI: 10.1557/mre.2020.43

First-Principles Prediction of a Ground State Crystal Structure of Magnesium Borohydride
journal, March 2008


Reversibility and Improved Hydrogen Release of Magnesium Borohydride
journal, February 2010

  • Newhouse, Rebecca J.; Stavila, Vitalie; Hwang, Son-Jong
  • The Journal of Physical Chemistry C, Vol. 114, Issue 11
  • DOI: 10.1021/jp9116744

Experimental investigation of Mg(B 3 H 8 ) 2 dimensionality, materials for energy storage applications
journal, January 2020

  • Moury, Romain; Gigante, Angelina; Remhof, Arndt
  • Dalton Transactions, Vol. 49, Issue 35
  • DOI: 10.1039/D0DT02170A

Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]
journal, February 1997


Thermal Conversion of Unsolvated Mg(B 3 H 8 ) 2 to BH 4 in the Presence of MgH 2
journal, April 2021

  • Gigante, Angelina; Leick, Noemi; Lipton, Andrew S.
  • ACS Applied Energy Materials, Vol. 4, Issue 4
  • DOI: 10.1021/acsaem.1c00159

Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage
journal, January 2007

  • Alapati, Sudhakar V.; Karl Johnson, J.; Sholl, David S.
  • Physical Chemistry Chemical Physics, Vol. 9, Issue 12
  • DOI: 10.1039/b617927d

Insight into Mg(BH 4 ) 2 with Synchrotron X-ray Diffraction: Structure Revision, Crystal Chemistry, and Anomalous Thermal Expansion
journal, March 2009

  • Filinchuk, Yaroslav; Černý, Radovan; Hagemann, Hans
  • Chemistry of Materials, Vol. 21, Issue 5
  • DOI: 10.1021/cm803019e

Reversible dehydrogenation of magnesium borohydride to magnesium triborane in the solid state under moderate conditions
journal, January 2011

  • Chong, Marina; Karkamkar, Abhi; Autrey, Tom
  • Chem. Commun., Vol. 47, Issue 4
  • DOI: 10.1039/C0CC03461D

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


First principles phonon calculations in materials science
journal, November 2015


Large-scale screening of metal hydrides for hydrogen storage from first-principles calculations based on equilibrium reaction thermodynamics
journal, January 2011

  • Kim, Ki Chul; Kulkarni, Anant D.; Johnson, J. Karl
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 15
  • DOI: 10.1039/c0cp02950e

A novel strategy for reversible hydrogen storage in Ca(BH 4 ) 2
journal, January 2015

  • Yan, Yigang; Remhof, Arndt; Rentsch, Daniel
  • Chemical Communications, Vol. 51, Issue 55
  • DOI: 10.1039/C5CC03605D

Thermodynamic modelling of Mg(BH4)2
journal, October 2015


First-Principles Prediction of Thermodynamically Reversible Hydrogen Storage Reactions in the Li-Mg-Ca-B-H System
journal, January 2009

  • Ozolins, V.; Majzoub, E. H.; Wolverton, C.
  • Journal of the American Chemical Society, Vol. 131, Issue 1
  • DOI: 10.1021/ja8066429

Decomposition and formation of magnesium borohydride
journal, July 2016


Magnesium borohydride as a hydrogen storage material: Properties and dehydrogenation pathway of unsolvated Mg(BH4)2
journal, January 2009

  • Soloveichik, G.; Gao, Y.; Rijssenbeek, J.
  • International Journal of Hydrogen Energy, Vol. 34, Issue 2, p. 916-928
  • DOI: 10.1016/j.ijhydene.2008.11.016

Decomposition pathway of Mg(BH4)2 under pressure: Metastable phases and thermodynamic parameters
journal, February 2011


Potassium octahydridotriborate: diverse polymorphism in a potential hydrogen storage material and potassium ion conductor
journal, January 2019

  • Grinderslev, Jakob B.; Møller, Kasper T.; Yan, Yigang
  • Dalton Transactions, Vol. 48, Issue 24
  • DOI: 10.1039/C9DT00742C

The structure, thermal properties and phase transformations of the cubic polymorph of magnesium tetrahydroborate
journal, January 2012

  • David, W. I. F.; Callear, S. K.; Jones, M. O.
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 33
  • DOI: 10.1039/c2cp23439d

Examining the robustness of first-principles calculations for metal hydride reaction thermodynamics by detection of metastable reaction pathways
journal, January 2011

  • Kim, Ki Chul; Kulkarni, Anant D.; Johnson, J. Karl
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 48
  • DOI: 10.1039/c1cp22489a

Formation Process of [B12H12]2− from [BH4] during the Dehydrogenation Reaction of Mg(BH4)2
journal, January 2011


Direct hydrogenation of magnesium boride to magnesium borohydride: demonstration of >11 weight percent reversible hydrogenstorage
journal, January 2010

  • Severa, Godwin; Rönnebro, Ewa; Jensen, Craig M.
  • Chem. Commun., Vol. 46, Issue 3
  • DOI: 10.1039/B921205A