DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Skin-like low-noise elastomeric organic photodiodes

Abstract

Stretchable optoelectronics made of elastomeric semiconductors could enable the integration of intelligent systems with soft materials, such as those of the biological world. Organic semiconductors and photodiodes have been engineered to be elastomeric; however, for photodetector applications, it remains a challenge to identify an elastomeric bulk heterojunction (e-BHJ) photoactive layer that combines a low Young’s modulus and a high strain at break that yields organic photodiodes with low electronic noise values and high photodetector performance. Here, a blend of an elastomer, a donor-like polymer, and an acceptor-like molecule yields a skin-like e-BHJ with a Young’s modulus of a few megapascals, comparable to values of human tissues, and a high strain at break of 189%. Elastomeric organic photodiodes based on e-BHJ photoactive layers maintain low electronic noise current values in the tens of femtoamperes range and noise equivalent power values in the tens of picowatts range under at least 60% strain.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1];  [4]; ORCiD logo [5];  [5]; ORCiD logo [1]
  1. Georgia Inst. of Technology, Atlanta, GA (United States). Center for Organic Photonics and Electronics (COPE), School of Electrical and Computer Engineering
  2. Georgia Inst. of Technology, Atlanta, GA (United States). Center for Organic Photonics and Electronics (COPE), School of Electrical and Computer Engineering; Northeastern Univ., Boston, MA (United States)
  3. Georgia Inst. of Technology, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering; Univ. of Connecticut, Storrs, CT (United States)
  4. Georgia Inst. of Technology, Atlanta, GA (United States). Center for Organic Photonics and Electronics (COPE), School of Electrical and Computer Engineering; Universidad Adolfo Ibáñez, Santiago (Chile)
  5. Georgia Inst. of Technology, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering
Publication Date:
Research Org.:
Georgia Institute of Technology, Atlanta, GA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); US Department of the Navy, Office of Naval Research (ONR); US Air Force Office of Scientific Research (AFOSR); Chilean National Commission for Scientific and Technological Research (CONICYT); National Science Foundation (NSF)
OSTI Identifier:
1842683
Grant/Contract Number:  
NA0003921; NA0002576; N00014-14-1-0580; N00014-16-1-2520; FA9550-16-1-0168; 72150387; 1400077
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 7; Journal Issue: 51; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Park, Youngrak, Fuentes-Hernandez, Canek, Kim, Kyungjin, Chou, Wen-Fang, Larrain, Felipe A., Graham, Samuel, Pierron, Olivier N., and Kippelen, Bernard. Skin-like low-noise elastomeric organic photodiodes. United States: N. p., 2021. Web. doi:10.1126/sciadv.abj6565.
Park, Youngrak, Fuentes-Hernandez, Canek, Kim, Kyungjin, Chou, Wen-Fang, Larrain, Felipe A., Graham, Samuel, Pierron, Olivier N., & Kippelen, Bernard. Skin-like low-noise elastomeric organic photodiodes. United States. https://doi.org/10.1126/sciadv.abj6565
Park, Youngrak, Fuentes-Hernandez, Canek, Kim, Kyungjin, Chou, Wen-Fang, Larrain, Felipe A., Graham, Samuel, Pierron, Olivier N., and Kippelen, Bernard. Fri . "Skin-like low-noise elastomeric organic photodiodes". United States. https://doi.org/10.1126/sciadv.abj6565. https://www.osti.gov/servlets/purl/1842683.
@article{osti_1842683,
title = {Skin-like low-noise elastomeric organic photodiodes},
author = {Park, Youngrak and Fuentes-Hernandez, Canek and Kim, Kyungjin and Chou, Wen-Fang and Larrain, Felipe A. and Graham, Samuel and Pierron, Olivier N. and Kippelen, Bernard},
abstractNote = {Stretchable optoelectronics made of elastomeric semiconductors could enable the integration of intelligent systems with soft materials, such as those of the biological world. Organic semiconductors and photodiodes have been engineered to be elastomeric; however, for photodetector applications, it remains a challenge to identify an elastomeric bulk heterojunction (e-BHJ) photoactive layer that combines a low Young’s modulus and a high strain at break that yields organic photodiodes with low electronic noise values and high photodetector performance. Here, a blend of an elastomer, a donor-like polymer, and an acceptor-like molecule yields a skin-like e-BHJ with a Young’s modulus of a few megapascals, comparable to values of human tissues, and a high strain at break of 189%. Elastomeric organic photodiodes based on e-BHJ photoactive layers maintain low electronic noise current values in the tens of femtoamperes range and noise equivalent power values in the tens of picowatts range under at least 60% strain.},
doi = {10.1126/sciadv.abj6565},
journal = {Science Advances},
number = 51,
volume = 7,
place = {United States},
year = {Fri Dec 17 00:00:00 EST 2021},
month = {Fri Dec 17 00:00:00 EST 2021}
}

Works referenced in this record:

Flexible, highly efficient all-polymer solar cells
journal, October 2015

  • Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9547

Mechanical Properties of Conjugated Polymers and Polymer-Fullerene Composites as a Function of Molecular Structure
journal, October 2013

  • Savagatrup, Suchol; Makaram, Aditya S.; Burke, Daniel J.
  • Advanced Functional Materials, Vol. 24, Issue 8
  • DOI: 10.1002/adfm.201302646

Network-Stabilized Bulk Heterojunction Organic Photovoltaics
journal, October 2018


A Solid-State Intrinsically Stretchable Polymer Solar Cell
journal, November 2017

  • Li, Lu; Liang, Jiajie; Gao, Huier
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 46
  • DOI: 10.1021/acsami.7b12908

Accurate characterization of next-generation thin-film photodetectors
journal, December 2018


Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method
journal, June 2021

  • Wang, Zhenye; Xu, Meichen; Li, Zhilin
  • Advanced Functional Materials, Vol. 31, Issue 35
  • DOI: 10.1002/adfm.202103534

Recent Advances in Flexible Inorganic Light Emitting Diodes: From Materials Design to Integrated Optoelectronic Platforms
journal, September 2018


Highly stretchable polymer semiconductor films through the nanoconfinement effect
journal, January 2017


Intrinsically Stretchable Nanostructured Silver Electrodes for Realizing Efficient Strain Sensors and Stretchable Organic Photovoltaics
journal, August 2017

  • Yu, Yang-Yen; Chen, Chien-Hsun; Chueh, Chu-Chen
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 33
  • DOI: 10.1021/acsami.7b06963

Increased elasticity of a low-bandgap conjugated copolymer by random segmentation for mechanically robust solar cells
journal, January 2014

  • Printz, Adam D.; Savagatrup, Suchol; Burke, Daniel J.
  • RSC Adv., Vol. 4, Issue 26
  • DOI: 10.1039/C4RA00029C

Monitoring of Vital Signs with Flexible and Wearable Medical Devices
journal, February 2016

  • Khan, Yasser; Ostfeld, Aminy E.; Lochner, Claire M.
  • Advanced Materials, Vol. 28, Issue 22
  • DOI: 10.1002/adma.201504366

Ultraflexible organic photonic skin
journal, April 2016

  • Yokota, Tomoyuki; Zalar, Peter; Kaltenbrunner, Martin
  • Science Advances, Vol. 2, Issue 4
  • DOI: 10.1126/sciadv.1501856

Indentation Versus Tensile Measurements of Young's Modulus for Soft Biological Tissues
journal, June 2011

  • McKee, Clayton T.; Last, Julie A.; Russell, Paul
  • Tissue Engineering Part B: Reviews, Vol. 17, Issue 3
  • DOI: 10.1089/ten.teb.2010.0520

Highly Flexible and Efficient All-Polymer Solar Cells with High-Viscosity Processing Polymer Additive toward Potential of Stretchable Devices
journal, September 2018

  • Chen, Shanshan; Jung, Sungwoo; Cho, Hye Jin
  • Angewandte Chemie International Edition, Vol. 57, Issue 40
  • DOI: 10.1002/anie.201807513

A hemispherical electronic eye camera based on compressible silicon optoelectronics
journal, August 2008

  • Ko, Heung Cho; Stoykovich, Mark P.; Song, Jizhou
  • Nature, Vol. 454, Issue 7205, p. 748-753
  • DOI: 10.1038/nature07113

The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery
journal, November 2007


A Skin‐Inspired, Interactive, and Flexible Optoelectronic Device with Hydrated Melanin Nanoparticles in a Protein Hydrogel–Elastomer Hybrid
journal, February 2020

  • Gogurla, Narendar; Roy, Biswajit; Min, Kyungtaek
  • Advanced Materials Technologies, Vol. 5, Issue 4
  • DOI: 10.1002/admt.201900936

Stretchable organic optoelectronic devices: Design of materials, structures, and applications
journal, October 2021

  • Lee, Hanbee; Jiang, Zhi; Yokota, Tomoyuki
  • Materials Science and Engineering: R: Reports, Vol. 146
  • DOI: 10.1016/j.mser.2021.100631

Mechanical Properties of a Library of Low-Band-Gap Polymers
journal, March 2016


Stretchable Organic Solar Cells
journal, February 2011

  • Lipomi, Darren J.; Tee, Benjamin C. -K.; Vosgueritchian, Michael
  • Advanced Materials, Vol. 23, Issue 15
  • DOI: 10.1002/adma.201004426

Materials and technologies for soft implantable neuroprostheses
journal, September 2016

  • Lacour, Stéphanie P.; Courtine, Grégoire; Guck, Jochen
  • Nature Reviews Materials, Vol. 1, Issue 10
  • DOI: 10.1038/natrevmats.2016.63

Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics
journal, October 2010

  • Kim, Rak-Hwan; Kim, Dae-Hyeong; Xiao, Jianliang
  • Nature Materials, Vol. 9, Issue 11, p. 929-937
  • DOI: 10.1038/nmat2879

A Flexible, Low Noise Reflective PPG Sensor Platform for Ear-Worn Heart Rate Monitoring
conference, June 2009

  • Patterson, James A. C.; McIlwraith, Douglas C.; Yang, Guang-Zhong
  • Implantable Body Sensor Networks Conference (BSN), 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks
  • DOI: 10.1109/BSN.2009.16

Stretchable organic optoelectronic sensorimotor synapse
journal, November 2018


Recent Progress in Flexible and Stretchable Organic Solar Cells
journal, July 2020

  • Qin, Jianqiang; Lan, Linkai; Chen, Shanshan
  • Advanced Functional Materials, Vol. 30, Issue 36
  • DOI: 10.1002/adfm.202002529

Ultraflexible Near-Infrared Organic Photodetectors for Conformal Photoplethysmogram Sensors
journal, July 2018

  • Park, Sungjun; Fukuda, Kenjiro; Wang, Ming
  • Advanced Materials, Vol. 30, Issue 34
  • DOI: 10.1002/adma.201802359

Intrinsically stretchable and healable semiconducting polymer for organic transistors
journal, November 2016

  • Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng
  • Nature, Vol. 539, Issue 7629
  • DOI: 10.1038/nature20102

Large-area low-noise flexible organic photodiodes for detecting faint visible light
journal, November 2020

  • Fuentes-Hernandez, Canek; Chou, Wen-Fang; Khan, Talha M.
  • Science, Vol. 370, Issue 6517
  • DOI: 10.1126/science.aba2624