DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Melting of spatially modulated phases at domain wall/surface junctions in antiferrodistortive multiferroics

Abstract

A physical understanding of the nature of spatially modulated phases (SMPs) in rare-earth-doped antiferrodistortive (AFD) multiferroics and how they behave close to surfaces and interfaces is lacking. Here the emergence of the antiferroelectric (AFE), ferroelectric (FE), or ferrielectric (AFE-FE) spatial modulation in the vicinity of the morphotropic phase transition in La x Bi 1 x Fe O 3 ( x ~ 0.2 ) is explored on the atomic level using high-resolution scanning transmission electron microscopy (HRSTEM). The suppression, or “melting,” of the AFE-type SMP in the vicinity of the AFD twin wall/surface junction is revealed by HRSTEM in La 0.22 Bi 0.78 Fe O 3 films and explained by the hybrid approach combining Landau-Ginzburg-Devonshire (LGD) phenomenology and the semimicroscopic four-sublattice model (FSM). The LGD-FSM approach reduces the problem of AFE (or AFE-FE) SMP emergence and stability to the thermodynamic analysis of the free-energy functional with AFE, FE, and AFD long-range order parameters and two master parameters: the FE-AFE coupling strength between four neighboring A sites and the nonstoichiometry factor, which are proportional to the variations of La concentration in La x Bi 1 x Fe O 3 films. Finally, we establish that the surface-induced melting of SMPs and the associated broadening of AFE AFD domain walls minimize the film free energy under certain conditions imposed on the master parameters and gradient energy below the critical value. The observed behavior provides insight into the origin of SMPs in AFD multiferroics.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [5]; ORCiD logo [5]
  1. National Academy of Sciences of Ukraine, Kyiv (Ukraine). Inst. of Physics; Taras Shevchenko Kyiv National Univ. (Ukraine)
  2. National Academy of Sciences of Ukraine, Kyiv (Ukraine). Inst. of Physics
  3. South China Normal Univ., Guangzhou (China). Inst. for Advanced Materials, Guangdong Provincial Key Lab. of Optical Information Materials and Technology
  4. Taras Shevchenko Kyiv National Univ. (Ukraine)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Natural Science Foundation of China (NSFC); European Research Council (ERC)
OSTI Identifier:
1842639
Grant/Contract Number:  
AC05-00OR22725; U1832104; 11704130; 778070; 2017B030301007; 201906010016
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 102; Journal Issue: 7; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; electric polarization; ferroelectric domains; structural order parameter; thin films; finite-element method

Citation Formats

Morozovska, Anna N., Eliseev, Eugene A., Chen, Deyang, Shvetz, Vladislav, Nelson, Christopher T., and Kalinin, Sergei V. Melting of spatially modulated phases at domain wall/surface junctions in antiferrodistortive multiferroics. United States: N. p., 2020. Web. doi:10.1103/physrevb.102.075426.
Morozovska, Anna N., Eliseev, Eugene A., Chen, Deyang, Shvetz, Vladislav, Nelson, Christopher T., & Kalinin, Sergei V. Melting of spatially modulated phases at domain wall/surface junctions in antiferrodistortive multiferroics. United States. https://doi.org/10.1103/physrevb.102.075426
Morozovska, Anna N., Eliseev, Eugene A., Chen, Deyang, Shvetz, Vladislav, Nelson, Christopher T., and Kalinin, Sergei V. Wed . "Melting of spatially modulated phases at domain wall/surface junctions in antiferrodistortive multiferroics". United States. https://doi.org/10.1103/physrevb.102.075426. https://www.osti.gov/servlets/purl/1842639.
@article{osti_1842639,
title = {Melting of spatially modulated phases at domain wall/surface junctions in antiferrodistortive multiferroics},
author = {Morozovska, Anna N. and Eliseev, Eugene A. and Chen, Deyang and Shvetz, Vladislav and Nelson, Christopher T. and Kalinin, Sergei V.},
abstractNote = {A physical understanding of the nature of spatially modulated phases (SMPs) in rare-earth-doped antiferrodistortive (AFD) multiferroics and how they behave close to surfaces and interfaces is lacking. Here the emergence of the antiferroelectric (AFE), ferroelectric (FE), or ferrielectric (AFE-FE) spatial modulation in the vicinity of the morphotropic phase transition in LaxBi1–xFeO3 (x~0.2) is explored on the atomic level using high-resolution scanning transmission electron microscopy (HRSTEM). The suppression, or “melting,” of the AFE-type SMP in the vicinity of the AFD twin wall/surface junction is revealed by HRSTEM in La0.22Bi0.78FeO3 films and explained by the hybrid approach combining Landau-Ginzburg-Devonshire (LGD) phenomenology and the semimicroscopic four-sublattice model (FSM). The LGD-FSM approach reduces the problem of AFE (or AFE-FE) SMP emergence and stability to the thermodynamic analysis of the free-energy functional with AFE, FE, and AFD long-range order parameters and two master parameters: the FE-AFE coupling strength between four neighboring A sites and the nonstoichiometry factor, which are proportional to the variations of La concentration in LaxBi1–xFeO3 films. Finally, we establish that the surface-induced melting of SMPs and the associated broadening of AFE AFD domain walls minimize the film free energy under certain conditions imposed on the master parameters and gradient energy below the critical value. The observed behavior provides insight into the origin of SMPs in AFD multiferroics.},
doi = {10.1103/physrevb.102.075426},
journal = {Physical Review B},
number = 7,
volume = 102,
place = {United States},
year = {Wed Aug 12 00:00:00 EDT 2020},
month = {Wed Aug 12 00:00:00 EDT 2020}
}

Works referenced in this record:

Thermodynamic potential and phase diagram for multiferroic bismuth ferrite (BiFeO 3 )
journal, May 2017

  • Karpinsky, Dmitry V.; Eliseev, Eugene A.; Xue, Fei
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0021-3

Nanoscale Domain Control in Multiferroic BiFeO3 Thin Films
journal, September 2006

  • Chu, Y.-H.; Zhan, Q.; Martin, L. W.
  • Advanced Materials, Vol. 18, Issue 17, p. 2307-2311
  • DOI: 10.1002/adma.200601098

Mapping gradient-driven morphological phase transition at the conductive domain walls of strained multiferroic films
journal, September 2019


A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics
journal, January 1958


Equilibrium and stability of polarization in ultrathin ferroelectric films with ionic surface compensation
journal, August 2011


Upper bounds for flexoelectric coefficients in ferroelectrics
journal, February 2014

  • Yudin, P. V.; Ahluwalia, R.; Tagantsev, A. K.
  • Applied Physics Letters, Vol. 104, Issue 8
  • DOI: 10.1063/1.4865208

Tracking the ultrafast motion of an antiferromagnetic order parameter
journal, September 2019


Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction
journal, January 2012

  • Borisevich, A. Y.; Eliseev, E. A.; Morozovska, A. N.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1778

Interface control of a morphotropic phase boundary in epitaxial samarium modified bismuth ferrite superlattices
journal, December 2014


Defect-driven flexochemical coupling in thin ferroelectric films
journal, January 2018

  • Eliseev, Eugene A.; Vorotiahin, Ivan S.; Fomichov, Yevhen M.
  • Physical Review B, Vol. 97, Issue 2
  • DOI: 10.1103/PhysRevB.97.024102

The evolution of multiferroics
journal, July 2016


Direct observation of ferroelectric domain switching in varying electric field regimes using in situ TEM
journal, November 2012


Conduction at domain walls in oxide multiferroics
journal, January 2009

  • Seidel, J.; Martin, L. W.; He, Q.
  • Nature Materials, Vol. 8, Issue 3
  • DOI: 10.1038/nmat2373

Rotomagnetic coupling in fine-grained multiferroic BiFe O 3 : Theory and experiment
journal, April 2018


β phase and γ β metal-insulator transition in multiferroic Bi Fe O 3
journal, January 2008


The β-to-γ Transition in BiFeO3: A Powder Neutron Diffraction Study
journal, June 2010

  • Arnold, Donna C.; Knight, Kevin S.; Catalan, Gustau
  • Advanced Functional Materials, Vol. 20, Issue 13
  • DOI: 10.1002/adfm.201000118

Control of polarization reversal temperature behavior by surface screening in thin ferroelectric films
journal, November 2018


Ultrathin limit and dead-layer effects in local polarization switching of BiFeO 3
journal, January 2012


Anisotropic conductivity of uncharged domain walls in BiFeO 3
journal, August 2012


Domain Wall Conduction and Polarization-Mediated Transport in Ferroelectrics
journal, April 2013

  • Vasudevan, Rama K.; Wu, Weida; Guest, Jeffrey R.
  • Advanced Functional Materials, Vol. 23, Issue 20
  • DOI: 10.1002/adfm.201300085

Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics
journal, October 2009


Revival of the magnetoelectric effect
journal, April 2005


Building a free-energy functional from atomically resolved imaging: Atomic-scale phenomena in La-doped BiFe O 3
journal, May 2019


Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3
journal, November 2011

  • Balke, Nina; Winchester, Benjamin; Ren, Wei
  • Nature Physics, Vol. 8, Issue 1
  • DOI: 10.1038/nphys2132

Magnetotransport at Domain Walls in BiFeO 3
journal, February 2012


Atomic mapping of structural distortions in 109° domain patterned BiFeO 3 thin films
journal, June 2017

  • Wang, Wen-Yuan; Zhu, Yin-Lian; Tang, Yun-Long
  • Journal of Materials Research, Vol. 32, Issue 12
  • DOI: 10.1557/jmr.2017.206

Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures
journal, March 2003


Domain Dynamics During Ferroelectric Switching
journal, November 2011


Vortex ferroelectric domains
journal, August 2008


Large scale arrays of four-state vortex domains in BiFeO 3 thin film
journal, November 2016

  • Wang, W. Y.; Zhu, Y. L.; Tang, Y. L.
  • Applied Physics Letters, Vol. 109, Issue 20
  • DOI: 10.1063/1.4967878

MATERIALS SCIENCE: The Renaissance of Magnetoelectric Multiferroics
journal, July 2005


Domain Wall Geometry Controls Conduction in Ferroelectrics
journal, September 2012

  • Vasudevan, R. K.; Morozovska, A. N.; Eliseev, E. A.
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl302382k

Functional Ferroic Domain Walls for Nanoelectronics
journal, September 2019

  • Sharma, Pankaj; Schoenherr, Peggy; Seidel, Jan
  • Materials, Vol. 12, Issue 18
  • DOI: 10.3390/ma12182927

A Strain-Driven Antiferroelectric-to-Ferroelectric Phase Transition in La-Doped BiFeO 3 Thin Films on Si
journal, August 2017


Temperature dependence of the crystal and magnetic structures of BiFeO 3
journal, April 1980

  • Fischer, P.; Polomska, M.; Sosnowska, I.
  • Journal of Physics C: Solid State Physics, Vol. 13, Issue 10
  • DOI: 10.1088/0022-3719/13/10/012

Influence of elastic strain gradient on the upper limit of flexocoupling strength, spatially modulated phases, and soft phonon dispersion in ferroics
journal, November 2016

  • Morozovska, Anna N.; Eliseev, Eugene A.; Scherbakov, Christian M.
  • Physical Review B, Vol. 94, Issue 17
  • DOI: 10.1103/PhysRevB.94.174112

Ferroelectric Self-Poling, Switching, and Monoclinic Domain Configuration in BiFeO 3 Thin Films
journal, May 2016

  • Beekman, C.; Siemons, W.; Chi, M.
  • Advanced Functional Materials, Vol. 26, Issue 28
  • DOI: 10.1002/adfm.201600468

Probing Ferroelectric Domain Engineering in BiFeO 3 Thin Films by Second Harmonic Generation
journal, July 2015

  • Trassin, Morgan; Luca, Gabriele De; Manz, Sebastian
  • Advanced Materials, Vol. 27, Issue 33
  • DOI: 10.1002/adma.201501636

Magnetoelectric and multiferroic media
journal, June 2012


Observation of polar vortices in oxide superlattices
journal, January 2016

  • Yadav, A. K.; Nelson, C. T.; Hsu, S. L.
  • Nature, Vol. 530, Issue 7589
  • DOI: 10.1038/nature16463

Domain walls in a perovskite oxide with two primary structural order parameters: First-principles study of BiFeO 3
journal, January 2013


Nanoscale Structural and Chemical Properties of Antipolar Clusters in Sm-Doped BiFeO 3 Ferroelectric Epitaxial Thin Films
journal, April 2010

  • Cheng, Ching-Jung; Borisevich, Albina Y.; Kan, Daisuke
  • Chemistry of Materials, Vol. 22, Issue 8
  • DOI: 10.1021/cm903618y

Nanoelectronics based on topological structures
journal, February 2019


Surface effect on domain wall width in ferroelectrics
journal, October 2009

  • Eliseev, Eugene A.; Morozovska, Anna N.; Kalinin, Sergei V.
  • Journal of Applied Physics, Vol. 106, Issue 8
  • DOI: 10.1063/1.3236644

Interface-induced phenomena in polarization response of ferroelectric thin films
journal, September 2006

  • Tagantsev, A. K.; Gerra, G.
  • Journal of Applied Physics, Vol. 100, Issue 5
  • DOI: 10.1063/1.2337009

Effect of substrate-induced strains on the spontaneous polarization of epitaxial BiFeO3 thin films
journal, June 2007

  • Zhang, J. X.; Li, Y. L.; Wang, Y.
  • Journal of Applied Physics, Vol. 101, Issue 11
  • DOI: 10.1063/1.2743733

Functional electronic inversion layers at ferroelectric domain walls
journal, March 2017

  • Mundy, J. A.; Schaab, J.; Kumagai, Y.
  • Nature Materials, Vol. 16, Issue 6
  • DOI: 10.1038/nmat4878

Dielectric Constant in Perovskite Type Crystals
journal, April 1952


Domain wall nanoelectronics
journal, February 2012


Intrinsic structural instabilities of domain walls driven by gradient coupling: Meandering antiferrodistortive-ferroelectric domain walls in BiFe O 3
journal, January 2019

  • Eliseev, Eugene A.; Morozovska, Anna N.; Nelson, Christopher T.
  • Physical Review B, Vol. 99, Issue 1
  • DOI: 10.1103/PhysRevB.99.014112

Atomic Level 1D Structural Modulations at the Negatively Charged Domain Walls in BiFeO 3 Films
journal, April 2015

  • Wang, Wen-Yuan; Tang, Yun-Long; Zhu, Yin-Lian
  • Advanced Materials Interfaces, Vol. 2, Issue 9
  • DOI: 10.1002/admi.201500024

Surface States and Rectification at a Metal Semi-Conductor Contact
journal, May 1947


Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate
journal, November 2001


Equilibrium Polarization of Ultrathin PbTiO 3 with Surface Compensation Controlled by Oxygen Partial Pressure
journal, October 2011


Electric-field control of local ferromagnetism using a magnetoelectric multiferroic
journal, April 2008

  • Chu, Ying-Hao; Martin, Lane W.; Holcomb, Mikel B.
  • Nature Materials, Vol. 7, Issue 6, p. 478-482
  • DOI: 10.1038/nmat2184

Electroelastic fields in artificially created vortex cores in epitaxial BiFeO3 thin films
journal, August 2015

  • Winchester, B.; Balke, N.; Cheng, X. X.
  • Applied Physics Letters, Vol. 107, Issue 5
  • DOI: 10.1063/1.4927750

Universal Behavior and Electric-Field-Induced Structural Transition in Rare-Earth-Substituted BiFeO3
journal, March 2010

  • Kan, Daisuke; Pálová, Lucia; Anbusathaiah, Varatharajan
  • Advanced Functional Materials, Vol. 20, Issue 7
  • DOI: 10.1002/adfm.200902017

Elastic boundary conditions in the presence of the flexoelectric effect
journal, November 2011


Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures
journal, January 2018

  • Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.
  • Reports on Progress in Physics, Vol. 81, Issue 3
  • DOI: 10.1088/1361-6633/aa915a

Universal emergence of spatially modulated structures induced by flexoantiferrodistortive coupling in multiferroics
journal, December 2013