DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stabilizing the heavily-doped and metallic phase of MoS2 monolayers with surface functionalization

Abstract

Monolayer molybdenum disulfide (MoS2) is one of the most studied two-dimensional (2D) transition metal dichalcogenides that is being investigated for various optoelectronic properties, such as catalysis, sensors, photovoltaics, and batteries. One such property that makes this material attractive is the ease in which 2D MoS2 can be converted between the semiconducting (2H) and metallic/semi-metallic (1T/1T') phases or heavily n-type doped 2H phase with ion intercalation, strain, or excess negative charge. Using n-butyl lithium (BuLi) immersion treatments, we achieve 2H MoS2 monolayers that are heavily n-type doped with shorter immersion times (10–120 mins) or conversion to the 1T/1T' phase with longer immersion times (6–24 h); however, these doped/converted monolayers are not stable and promptly revert back to the initial 2H phase upon exposure to air. To overcome this issue and maintain the modification of the monolayer MoS2 upon air exposure, we use BuLi treatments plus surface functionalization p-(CH3CH2)2NPh-MoS2 (Et2N-MoS2)—to maintain heavily n-type doped 2H phase or the 1T/1T' phase, which is preserved for over two weeks when on indium tin oxide or sapphire substrates. We also determine that the low sheet resistance and metallic-like properties correlate with the BuLi immersion times. These modified MoS2 materials are characterized with confocal Raman/photoluminescence, absorption,more » x-ray photoelectron spectroscopy as well as scanning Kelvin probe microscopy, scanning electrochemical microscopy, and four-point probe sheet resistance measurements to quantify the differences in the monolayer optoelectronic properties. We will demonstrate chemical methodologies to control the modified monolayer MoS2 that likely extend to other 2D transition metal dichalcogenides, which will greatly expand the uses for these nanomaterials.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [2]; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. City Univ. of New York (CUNY), NY (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1841133
Report Number(s):
NREL/JA-5900-80010
Journal ID: ISSN 2053-1583; MainId:41215;UUID:f4bc7a45-591a-4058-831d-95ea9ab9d189;MainAdminID:63587
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
2D Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2053-1583
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 2D TMDC; solar-photochemistry

Citation Formats

Zhang, Hanyu, Koledin, Tamara D., Xiang, Wang, Hao, Ji, Nanayakkara, Sanjini U., Attanayake, Nuwan H., Li, Zhaodong, Mirkin, Michael V., and Miller, Elisa M. Stabilizing the heavily-doped and metallic phase of MoS2 monolayers with surface functionalization. United States: N. p., 2021. Web. doi:10.1088/2053-1583/ac3f44.
Zhang, Hanyu, Koledin, Tamara D., Xiang, Wang, Hao, Ji, Nanayakkara, Sanjini U., Attanayake, Nuwan H., Li, Zhaodong, Mirkin, Michael V., & Miller, Elisa M. Stabilizing the heavily-doped and metallic phase of MoS2 monolayers with surface functionalization. United States. https://doi.org/10.1088/2053-1583/ac3f44
Zhang, Hanyu, Koledin, Tamara D., Xiang, Wang, Hao, Ji, Nanayakkara, Sanjini U., Attanayake, Nuwan H., Li, Zhaodong, Mirkin, Michael V., and Miller, Elisa M. Fri . "Stabilizing the heavily-doped and metallic phase of MoS2 monolayers with surface functionalization". United States. https://doi.org/10.1088/2053-1583/ac3f44. https://www.osti.gov/servlets/purl/1841133.
@article{osti_1841133,
title = {Stabilizing the heavily-doped and metallic phase of MoS2 monolayers with surface functionalization},
author = {Zhang, Hanyu and Koledin, Tamara D. and Xiang, Wang and Hao, Ji and Nanayakkara, Sanjini U. and Attanayake, Nuwan H. and Li, Zhaodong and Mirkin, Michael V. and Miller, Elisa M.},
abstractNote = {Monolayer molybdenum disulfide (MoS2) is one of the most studied two-dimensional (2D) transition metal dichalcogenides that is being investigated for various optoelectronic properties, such as catalysis, sensors, photovoltaics, and batteries. One such property that makes this material attractive is the ease in which 2D MoS2 can be converted between the semiconducting (2H) and metallic/semi-metallic (1T/1T') phases or heavily n-type doped 2H phase with ion intercalation, strain, or excess negative charge. Using n-butyl lithium (BuLi) immersion treatments, we achieve 2H MoS2 monolayers that are heavily n-type doped with shorter immersion times (10–120 mins) or conversion to the 1T/1T' phase with longer immersion times (6–24 h); however, these doped/converted monolayers are not stable and promptly revert back to the initial 2H phase upon exposure to air. To overcome this issue and maintain the modification of the monolayer MoS2 upon air exposure, we use BuLi treatments plus surface functionalization p-(CH3CH2)2NPh-MoS2 (Et2N-MoS2)—to maintain heavily n-type doped 2H phase or the 1T/1T' phase, which is preserved for over two weeks when on indium tin oxide or sapphire substrates. We also determine that the low sheet resistance and metallic-like properties correlate with the BuLi immersion times. These modified MoS2 materials are characterized with confocal Raman/photoluminescence, absorption, x-ray photoelectron spectroscopy as well as scanning Kelvin probe microscopy, scanning electrochemical microscopy, and four-point probe sheet resistance measurements to quantify the differences in the monolayer optoelectronic properties. We will demonstrate chemical methodologies to control the modified monolayer MoS2 that likely extend to other 2D transition metal dichalcogenides, which will greatly expand the uses for these nanomaterials.},
doi = {10.1088/2053-1583/ac3f44},
journal = {2D Materials},
number = 1,
volume = 9,
place = {United States},
year = {Fri Dec 24 00:00:00 EST 2021},
month = {Fri Dec 24 00:00:00 EST 2021}
}

Works referenced in this record:

Opto-Valleytronic Spin Injection in Monolayer MoS 2 /Few-Layer Graphene Hybrid Spin Valves
journal, May 2017


Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts
journal, May 2015


Thickness Scaling Effect on Interfacial Barrier and Electrical Contact to Two-Dimensional MoS 2 Layers
journal, November 2014

  • Li, Song-Lin; Komatsu, Katsuyoshi; Nakaharai, Shu
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn506138y

Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS 2 Nanosheets
journal, May 2013

  • Lukowski, Mark A.; Daniel, Andrew S.; Meng, Fei
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja404523s

Molecular doping of MoS 2 transistors by self-assembled oleylamine networks
journal, December 2016

  • Lockhart de la Rosa, César J.; Phillipson, Roald; Teyssandier, Joan
  • Applied Physics Letters, Vol. 109, Issue 25
  • DOI: 10.1063/1.4972781

Lithium intercalation via -Butyllithium of the layered transition metal dichalcogenides
journal, April 1975


Targeted Synthesis of 2H- and 1T-Phase MoS 2 Monolayers for Catalytic Hydrogen Evolution
journal, September 2016


Metallic MoS 2 for High Performance Energy Storage and Energy Conversion
journal, July 2018


Atomically Thin MoS 2 : A Versatile Nongraphene 2D Material
journal, February 2016

  • Venkata Subbaiah, Y. P.; Saji, K. J.; Tiwari, A.
  • Advanced Functional Materials, Vol. 26, Issue 13
  • DOI: 10.1002/adfm.201504202

Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications
journal, January 2016

  • Wan, Jiayu; Lacey, Steven D.; Dai, Jiaqi
  • Chemical Society Reviews, Vol. 45, Issue 24
  • DOI: 10.1039/C5CS00758E

Chemical Vapor Sensing with Monolayer MoS2
journal, January 2013

  • Perkins, F. K.; Friedman, A. L.; Cobas, E.
  • Nano Letters, Vol. 13, Issue 2, p. 668-673
  • DOI: 10.1021/nl3043079

P-type Doping in Large-Area Monolayer MoS 2 by Chemical Vapor Deposition
journal, January 2020

  • Li, Mengge; Yao, Jiadong; Wu, Xiaoxiang
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 5
  • DOI: 10.1021/acsami.9b19864

Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage
journal, September 2016


Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS 2
journal, September 2017


Argon Plasma Induced Phase Transition in Monolayer MoS 2
journal, July 2017

  • Zhu, Jianqi; Wang, Zhichang; Yu, Hua
  • Journal of the American Chemical Society, Vol. 139, Issue 30
  • DOI: 10.1021/jacs.7b05765

Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material
journal, January 2015

  • Zhang, Xin; Qiao, Xiao-Fen; Shi, Wei
  • Chemical Society Reviews, Vol. 44, Issue 9
  • DOI: 10.1039/C4CS00282B

Doping-controlled phase transitions in single-layer MoS 2
journal, October 2017

  • Zhuang, Houlong L.; Johannes, Michelle D.; Singh, Arunima K.
  • Physical Review B, Vol. 96, Issue 16
  • DOI: 10.1103/PhysRevB.96.165305

Electronic structures and optical properties of P and Cl atoms adsorbed/substitutionally doped monolayer MoS 2
journal, October 2018


Effect of Intercalated Metals on the Electrocatalytic Activity of 1T-MoS 2 for the Hydrogen Evolution Reaction
journal, November 2017


Tunable inverted gap in monolayer quasi-metallic MoS2 induced by strong charge-lattice coupling
journal, September 2017


Optimizing Hybridization of 1T and 2H Phases in MoS 2 Monolayers to Improve Capacitances of Supercapacitors
journal, June 2015


Air-Stable Surface Charge Transfer Doping of MoS 2 by Benzyl Viologen
journal, May 2014

  • Kiriya, Daisuke; Tosun, Mahmut; Zhao, Peida
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja5033327

Local engineering of topological phase in monolayer MoS2
journal, December 2019


Oxidation of metallic two-dimensional transition metal dichalcogenides: 1T-MoS 2 and 1T-TaS 2
journal, July 2020


Generation of Monolayer MoS 2 with 1T Phase by Spatial‐Confinement‐Induced Ultrathin PPy Anchoring for High‐Performance Supercapacitor
journal, April 2019

  • Tian, Yuyu; Song, Xuefeng; Liu, Jing
  • Advanced Materials Interfaces, Vol. 6, Issue 10
  • DOI: 10.1002/admi.201900162

Effect of lithium doping on the optical properties of monolayer MoS 2
journal, March 2018

  • Saigal, Nihit; Wielert, Isabelle; Čapeta, Davor
  • Applied Physics Letters, Vol. 112, Issue 12
  • DOI: 10.1063/1.5021629

Air stable and reversible n-type surface functionalization of MoS 2 monolayer using Arg and Lys amino acids
journal, January 2020

  • Li, Mengge; Yao, Jiadong; Liu, Yali
  • Journal of Materials Chemistry C, Vol. 8, Issue 35
  • DOI: 10.1039/D0TC02939D

Enhanced Performance of a CVD MoS 2 Photodetector by Chemical in Situ n-Type Doping
journal, March 2019

  • Li, Songyu; Chen, Xiaoqing; Liu, Famin
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 12
  • DOI: 10.1021/acsami.9b00856

High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals
journal, April 2018


Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010


Quantum spin Hall state in monolayer 1T -TMDCs
journal, May 2020

  • Li, Zhuojun; Song, Yekai; Tang, Shujie
  • Journal of Physics: Condensed Matter, Vol. 32, Issue 33
  • DOI: 10.1088/1361-648X/ab8660

Degenerate n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium
journal, April 2013

  • Fang, Hui; Tosun, Mahmut; Seol, Gyungseon
  • Nano Letters, Vol. 13, Issue 5, p. 1991-1995
  • DOI: 10.1021/nl400044m

Telluriding monolayer MoS2 and WS2 via alkali metal scooter
journal, December 2017


Scanning Probe Characterization of Heterostructured Colloidal Nanomaterials
journal, July 2015

  • Nanayakkara, Sanjini U.; van de Lagemaat, Jao; Luther, Joseph M.
  • Chemical Reviews, Vol. 115, Issue 16
  • DOI: 10.1021/cr500280t

Bandgap Engineering of Strained Monolayer and Bilayer MoS2
journal, July 2013

  • Conley, Hiram J.; Wang, Bin; Ziegler, Jed I.
  • Nano Letters, Vol. 13, Issue 8, p. 3626-3630
  • DOI: 10.1021/nl4014748

Defects Engineered Monolayer MoS 2 for Improved Hydrogen Evolution Reaction
journal, January 2016


Spectroscopic evaluation of charge-transfer doping and strain in graphene/ MoS 2 heterostructures
journal, May 2019


Sheet Resistance Reduction of MoS₂ Film Using Sputtering and Chlorine Plasma Treatment Followed by Sulfur Vapor Annealing
journal, January 2021

  • Hamada, Takuya; Tomiya, Shigetaka; Tatsumi, Tetsuya
  • IEEE Journal of the Electron Devices Society, Vol. 9
  • DOI: 10.1109/JEDS.2021.3050801

Structures of Aniline and Polyaniline Molecules Adsorbed on Au(111) Electrode: as Probed by in Situ STM, ex Situ XPS, and NEXAFS
journal, July 2009

  • Yau, Shuehlin; Lee, YiHui; Chang, ChinZen
  • The Journal of Physical Chemistry C, Vol. 113, Issue 31
  • DOI: 10.1021/jp9027194

Interfacial n-Doping Using an Ultrathin TiO 2 Layer for Contact Resistance Reduction in MoS 2
journal, December 2015

  • Kaushik, Naveen; Karmakar, Debjani; Nipane, Ankur
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 1
  • DOI: 10.1021/acsami.5b08559

A new (2 × 1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations
journal, November 2013

  • Hu, Ting; Li, Rui; Dong, Jinming
  • The Journal of Chemical Physics, Vol. 139, Issue 17
  • DOI: 10.1063/1.4827082

From Bulk to Monolayer MoS2: Evolution of Raman Scattering
journal, January 2012

  • Li, Hong; Zhang, Qing; Yap, Chin Chong Ray
  • Advanced Functional Materials, Vol. 22, Issue 7
  • DOI: 10.1002/adfm.201102111

Probing Multiphased Transition in Bulk MoS 2 by Direct Electron Injection
journal, November 2019


Photoinduced charge transfer in transition metal dichalcogenide heterojunctions – towards next generation energy technologies
journal, January 2020

  • Sulas-Kern, Dana B.; Miller, Elisa M.; Blackburn, Jeffrey L.
  • Energy & Environmental Science, Vol. 13, Issue 9
  • DOI: 10.1039/D0EE01370F

Native defects in bulk and monolayer MoS 2 from first principles
journal, March 2015


Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS 2 nanosheets
journal, January 2019

  • Sun, Tong; Zhang, Hanyu; Wang, Xiang
  • Nanoscale Horizons, Vol. 4, Issue 3
  • DOI: 10.1039/C8NH00346G

Air-stable and efficient electron doping of monolayer MoS 2 by salt–crown ether treatment
journal, January 2021

  • Ogura, Hiroto; Kaneda, Masahiko; Nakanishi, Yusuke
  • Nanoscale, Vol. 13, Issue 19
  • DOI: 10.1039/D1NR01279G

Phase-Dependent Fluorescence Quenching Efficiency of MoS 2 Nanosheets and Their Applications in Multiplex Target Biosensing
journal, November 2018

  • Lan, Lingyi; Chen, Danke; Yao, Yao
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 49
  • DOI: 10.1021/acsami.8b15677

Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS 2
journal, August 2016


Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS 2
journal, August 2017


Tuning Electrical Conductance of MoS 2 Monolayers through Substitutional Doping
journal, May 2020


Substrate-induced strain and charge doping in CVD-grown monolayer MoS 2
journal, October 2017

  • Chae, Woo Hyun; Cain, Jeffrey D.; Hanson, Eve D.
  • Applied Physics Letters, Vol. 111, Issue 14
  • DOI: 10.1063/1.4998284

Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering
journal, November 2014

  • Voiry, Damien; Goswami, Anandarup; Kappera, Rajesh
  • Nature Chemistry, Vol. 7, Issue 1
  • DOI: 10.1038/nchem.2108

Monolayer MoS 2 –Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity
journal, January 2016

  • Jiang, Lianfu; Lin, Binghui; Li, Xiaoming
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 4
  • DOI: 10.1021/acsami.5b10692

Carrier Plasmon Induced Nonlinear Band Gap Renormalization in Two-Dimensional Semiconductors
journal, February 2015


High Phase Purity of Large‐Sized 1T′‐MoS 2 Monolayers with 2D Superconductivity
journal, March 2019


Probing the Effect of Chemical Dopant Phase on Photoluminescence of Monolayer MoS 2 Using in Situ Raman Microspectroscopy
journal, June 2019

  • Birmingham, Blake; Yuan, Jiangtan; Filez, Matthias
  • The Journal of Physical Chemistry C, Vol. 123, Issue 25
  • DOI: 10.1021/acs.jpcc.9b03277

Quantum spin Hall effect in two-dimensional transition metal dichalcogenides
journal, November 2014


Confocal absorption spectral imaging of MoS 2 : optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS 2
journal, January 2014

  • Dhakal, Krishna P.; Duong, Dinh Loc; Lee, Jubok
  • Nanoscale, Vol. 6, Issue 21
  • DOI: 10.1039/C4NR03703K

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
journal, April 2013

  • Chhowalla, Manish; Shin, Hyeon Suk; Eda, Goki
  • Nature Chemistry, Vol. 5, Issue 4, p. 263-275
  • DOI: 10.1038/nchem.1589

Layer-controlled CVD growth of large-area two-dimensional MoS 2 films
journal, January 2015

  • Jeon, Jaeho; Jang, Sung Kyu; Jeon, Su Min
  • Nanoscale, Vol. 7, Issue 5
  • DOI: 10.1039/C4NR04532G

Doping of Monolayer Transition-Metal Dichalcogenides via Physisorption of Aromatic Solvent Molecules
journal, January 2019

  • Wang, Ye; Slassi, Amine; Stoeckel, Marc-Antoine
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 3
  • DOI: 10.1021/acs.jpclett.8b03697

Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS 2 Nanosheets via Covalent Functionalization
journal, December 2017

  • Benson, Eric E.; Zhang, Hanyu; Schuman, Samuel A.
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b11242

Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates
journal, December 2013

  • Sercombe, D.; Schwarz, S.; Pozo-Zamudio, O. Del
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03489

Single-layer MoS2 transistors
journal, January 2011

  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279

Unique interfacial thermodynamics of few-layer 2D MoS 2 for (photo)electrochemical catalysis
journal, January 2019

  • Carroll, Gerard Michael; Zhang, Hanyu; Dunklin, Jeremy R.
  • Energy & Environmental Science, Vol. 12, Issue 5
  • DOI: 10.1039/C9EE00513G

Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS 2 Continuous Films
journal, October 2016


Large Dendritic Monolayer MoS 2 Grown by Atmospheric Pressure Chemical Vapor Deposition for Electrocatalysis
journal, January 2018

  • Xu, Wenshuo; Li, Sha; Zhou, Si
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 5
  • DOI: 10.1021/acsami.7b14861

2D MoS 2 -Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications
journal, November 2018


Local Modulation of Electrical Transport in 2D Layered Materials Induced by Electron Beam Irradiation
journal, April 2019

  • Lin, Chih-Pin; Chen, Po-Chun; Huang, Jyun-Hong
  • ACS Applied Electronic Materials, Vol. 1, Issue 5
  • DOI: 10.1021/acsaelm.9b00057