DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On Ohm’s law in reduced plasma fluid models

Abstract

Drift-reduced MHD models are widely used to study magnetised plasma phenomena, in particular for magnetically confined fusion applications, as well as in solar and astrophysical research. This letter discusses the choice of Ohm's law in these models, the resulting dispersion relations for the dynamics parallel to the magnetic field, and the implications for numerical simulations. We find that if electron pressure is included in Ohm's law, then both electromagnetic and finite electron mass effects must also be included in order to obtain physical dispersion relations. A simple modification to the plasma vorticity is also found which improves handling of low density regions, of particular relevance to the simulation of the boundary region of magnetised plasmas.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2];  [3]
  1. Univ. of York (United Kingdom); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Culham Centre for Fusion Energy, Oxon (United Kingdom)
  3. Culham Centre for Fusion Energy, Oxon (United Kingdom); Univ. of Exeter (United Kingdom)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1840134
Report Number(s):
LLNL-JRNL-826562
Journal ID: ISSN 0741-3335; 1041291; TRN: US2301180
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Plasma Physics and Controlled Fusion
Additional Journal Information:
Journal Volume: 63; Journal Issue: 12; Journal ID: ISSN 0741-3335
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; dispersion; fluid model; tokamak edge; numerical simulation; Ohm’s law

Citation Formats

Dudson, Benjamin D., Newton, S. L., Omotani, J. T., and Birch, J.. On Ohm’s law in reduced plasma fluid models. United States: N. p., 2021. Web. doi:10.1088/1361-6587/ac2af9.
Dudson, Benjamin D., Newton, S. L., Omotani, J. T., & Birch, J.. On Ohm’s law in reduced plasma fluid models. United States. https://doi.org/10.1088/1361-6587/ac2af9
Dudson, Benjamin D., Newton, S. L., Omotani, J. T., and Birch, J.. Tue . "On Ohm’s law in reduced plasma fluid models". United States. https://doi.org/10.1088/1361-6587/ac2af9. https://www.osti.gov/servlets/purl/1840134.
@article{osti_1840134,
title = {On Ohm’s law in reduced plasma fluid models},
author = {Dudson, Benjamin D. and Newton, S. L. and Omotani, J. T. and Birch, J.},
abstractNote = {Drift-reduced MHD models are widely used to study magnetised plasma phenomena, in particular for magnetically confined fusion applications, as well as in solar and astrophysical research. This letter discusses the choice of Ohm's law in these models, the resulting dispersion relations for the dynamics parallel to the magnetic field, and the implications for numerical simulations. We find that if electron pressure is included in Ohm's law, then both electromagnetic and finite electron mass effects must also be included in order to obtain physical dispersion relations. A simple modification to the plasma vorticity is also found which improves handling of low density regions, of particular relevance to the simulation of the boundary region of magnetised plasmas.},
doi = {10.1088/1361-6587/ac2af9},
journal = {Plasma Physics and Controlled Fusion},
number = 12,
volume = 63,
place = {United States},
year = {2021},
month = {10}
}

Works referenced in this record:

Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks
journal, January 1976


Hamiltonian four-field model for nonlinear tokamak dynamics
journal, January 1987

  • Hazeltine, R. D.; Hsu, C. T.; Morrison, P. J.
  • Physics of Fluids, Vol. 30, Issue 10
  • DOI: 10.1063/1.866527

Numerical studies of nonlinear evolution of kink modes in tokamaks
journal, January 1976

  • Rosenbluth, Marshall N.; Monticello, D. A.; Strauss, H. R.
  • Physics of Fluids, Vol. 19, Issue 12
  • DOI: 10.1063/1.861430

Collisional drift fluid equations and implications for drift waves
journal, January 1996


Interplanetary and interstellar plasma turbulence
journal, March 2007

  • Schekochihin, A. A.; Cowley, S. C.; Dorland, W.
  • Plasma Physics and Controlled Fusion, Vol. 49, Issue 5A
  • DOI: 10.1088/0741-3335/49/5A/S16

Shell Models of RMHD Turbulence and the Heating of Solar Coronal Loops
journal, June 2007

  • Buchlin, E.; Velli, M.
  • The Astrophysical Journal, Vol. 662, Issue 1
  • DOI: 10.1086/512765

Fluid formalism for collisionless magnetized plasmas
journal, May 2005


Numerical investigation of isolated filament motion in a realistic tokamak geometry
journal, September 2015


Shear-Alfvén dynamics of toroidally confined plasmas
journal, May 1985


BOUT++: A framework for parallel plasma fluid simulations
journal, September 2009


Modeling of large amplitude plasma blobs in three-dimensions
journal, January 2014

  • Angus, Justin R.; Umansky, Maxim V.
  • Physics of Plasmas, Vol. 21, Issue 1
  • DOI: 10.1063/1.4863503

Dynamics of scrape-off layer filaments in high β plasmas
journal, September 2019

  • Hoare, D.; Militello, F.; Omotani, J. T.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 10
  • DOI: 10.1088/1361-6587/ab34f8

TOKAM-3D: A 3D fluid code for transport and turbulence in the edge plasma of Tokamaks
journal, January 2010


Upstream and divertor ion temperature measurements on MAST by retarding field energy analyser
journal, May 2012


Three-dimensional computation of drift Alfvén turbulence
journal, October 1997


Is it necessary to resolve the Debye length in standard or δ f PIC codes?
journal, May 2020


Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation
journal, November 2012


Nonlinear reduced fluid equations for toroidal plasmas
journal, January 1984

  • Drake, J. F.; Antonsen, Thomas M.
  • Physics of Fluids, Vol. 27, Issue 4
  • DOI: 10.1063/1.864680

A generalized reduced fluid model with finite ion-gyroradius effects
journal, January 1986

  • Hsu, C. T.; Hazeltine, R. D.; Morrison, P. J.
  • Physics of Fluids, Vol. 29, Issue 5
  • DOI: 10.1063/1.865665

Electromagnetic effects on dynamics of high-beta filamentary structures
journal, January 2015

  • Lee, Wonjae; Umansky, Maxim V.; Angus, J. R.
  • Physics of Plasmas, Vol. 22, Issue 1
  • DOI: 10.1063/1.4905639

Ion temperature measurements of L-mode filaments in MAST by retarding field energy analyser
journal, February 2016


Reduced MHD equations for mirror machines
journal, July 1982


Three dimensional simulations of plasma filaments in the scrape off layer: A comparison with models of reduced dimensionality
journal, December 2014

  • Easy, L.; Militello, F.; Omotani, J.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4904207

Gyrokinetic particle simulation model
journal, September 1987


Application of Parallel Implicit Methods to Edge-Plasma Numerical Simulations
journal, January 2002

  • Rognlien, T. D.; Xu, X. Q.; Hindmarsh, A. C.
  • Journal of Computational Physics, Vol. 175, Issue 1
  • DOI: 10.1006/jcph.2001.6944

Transport Equations of Plasma in a Curvilinear Magnetic Field
journal, January 1984


Generalized reduced magnetohydrodynamic equations
journal, December 1998

  • Kruger, S. E.; Hegna, C. C.; Callen, J. D.
  • Physics of Plasmas, Vol. 5, Issue 12
  • DOI: 10.1063/1.873152

Status and verification of edge plasma turbulence code BOUT
journal, June 2009


�ber die partiellen Differenzengleichungen der mathematischen Physik
journal, December 1928

  • Courant, R.; Friedrichs, K.; Lewy, H.
  • Mathematische Annalen, Vol. 100, Issue 1
  • DOI: 10.1007/BF01448839

Energy-conserving finite-β electromagnetic drift-fluid equations
journal, September 2005


Three-dimensional plasma edge turbulence simulations of the Mega Ampere Spherical Tokamak and comparison with experimental measurements
journal, August 2019

  • Riva, Fabio; Militello, Fulvio; Elmore, Sarah
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 9
  • DOI: 10.1088/1361-6587/ab3561

Simulations of drift resistive ballooning L-mode turbulence in the edge plasma of the DIII-D tokamak
journal, May 2013

  • Cohen, B. I.; Umansky, M. V.; Nevins, W. M.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4804638

Drift-ordered fluid equations for field-aligned modes in low-β collisional plasma with equilibrium pressure pedestals
journal, December 2003

  • Simakov, Andrei N.; Catto, Peter J.
  • Physics of Plasmas, Vol. 10, Issue 12
  • DOI: 10.1063/1.1623492

Revisited global drift fluid model for linear devices
journal, July 2012


Heating of the Solar Chromosphere and Corona by AlfvÉN wave Turbulence
journal, June 2011

  • van Ballegooijen, A. A.; Asgari-Targhi, M.; Cranmer, S. R.
  • The Astrophysical Journal, Vol. 736, Issue 1
  • DOI: 10.1088/0004-637X/736/1/3

Review of implicit methods for the magnetohydrodynamic description of magnetically confined plasmas
journal, February 2012


SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers
journal, September 2005

  • Hindmarsh, Alan C.; Brown, Peter N.; Grant, Keith E.
  • ACM Transactions on Mathematical Software, Vol. 31, Issue 3
  • DOI: 10.1145/1089014.1089020