DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Control of Catalyst Isomers Using an N-Phenyl-Substituted RN(CH2CH2PiPr2)2 Pincer Ligand in CO2 Hydrogenation and Formic Acid Dehydrogenation

Abstract

A novel pincer ligand, i PrPNPhP [PhN- (CH2CH2PiPr2)2], which is an analogue of the versatile MACHO ligand, iPrPNHP [HN(CH2CH2PiPr2)2], was synthesized and characterized. The ligand was coordinated to ruthenium, and a series of hydride-containing complexes were isolated and characterized by NMR and IR spectroscopies, as well as X-ray diffraction. Comparisons to previously published analogues ligated by iPrPNHP and iPrPNMeP [CH3N(CH2CH2PiPr2)2] illustrate that there are large changes in the coordination chemistry that occur when the nitrogen substituent of the pincer ligand is altered. For example, ruthenium hydrides supported by the iPrPNPhP ligand always form the syn isomer (where syn/anti refer to the relative orientation of the group on nitrogen and the hydride ligand on ruthenium), whereas complexes supported by iPrPNHP form the anti isomer and complexes supported by iPrPNMeP form a mixture of syn and anti isomers. We evaluated the impact of the nitrogen substituent of the pincer ligand in catalysis by comparing a series of iPrPNRP (R = H, Me, Ph)-ligated ruthenium hydride complexes as catalysts for formic acid dehydrogenation and carbon dioxide (CO2) hydrogenation to formate. The iPrPNPhP-ligated species is the most active for formic acid dehydrogenation, and mechanistic studies suggest that this is likely because there are kineticmore » advantages for catalysts that operate via the syn isomer. In CO2 hydrogenation, the iPrPNPhP-ligated species is again the most active under our optimal conditions, and we report some of the highest turnover frequencies for homogeneous catalysts. Experimental and theoretical insights into the turnover-limiting step of catalysis provide a basis for the observed trends in catalytic activity. Additionally, the stability of our complexes enabled us to detect a previously unobserved autocatalytic effect involving the base that is added to drive the reaction. Overall, by modifying the nitrogen substituent on the MACHO ligand, we have developed highly active catalysts for formic acid dehydrogenation and CO2 hydrogenation and also provided a framework for future catalyst development.« less

Authors:
 [1];  [2]; ORCiD logo [2]; ORCiD logo [1];  [1]
  1. Yale Univ., New Haven, CT (United States)
  2. Univ. of Missouri, Columbia, MO (United States)
Publication Date:
Research Org.:
Yale Univ., New Haven, CT (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1839397
Grant/Contract Number:  
SC0018222
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 61; Journal Issue: 1; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Organic acids; Ligands; Organic reactions; Catalysts; Molecular structure

Citation Formats

Curley, Julia B., Hert, Clayton, Bernskoetter, Wesley H., Hazari, Nilay, and Mercado, Brandon Q. Control of Catalyst Isomers Using an N-Phenyl-Substituted RN(CH2CH2PiPr2)2 Pincer Ligand in CO2 Hydrogenation and Formic Acid Dehydrogenation. United States: N. p., 2021. Web. doi:10.1021/acs.inorgchem.1c03372.
Curley, Julia B., Hert, Clayton, Bernskoetter, Wesley H., Hazari, Nilay, & Mercado, Brandon Q. Control of Catalyst Isomers Using an N-Phenyl-Substituted RN(CH2CH2PiPr2)2 Pincer Ligand in CO2 Hydrogenation and Formic Acid Dehydrogenation. United States. https://doi.org/10.1021/acs.inorgchem.1c03372
Curley, Julia B., Hert, Clayton, Bernskoetter, Wesley H., Hazari, Nilay, and Mercado, Brandon Q. Sat . "Control of Catalyst Isomers Using an N-Phenyl-Substituted RN(CH2CH2PiPr2)2 Pincer Ligand in CO2 Hydrogenation and Formic Acid Dehydrogenation". United States. https://doi.org/10.1021/acs.inorgchem.1c03372. https://www.osti.gov/servlets/purl/1839397.
@article{osti_1839397,
title = {Control of Catalyst Isomers Using an N-Phenyl-Substituted RN(CH2CH2PiPr2)2 Pincer Ligand in CO2 Hydrogenation and Formic Acid Dehydrogenation},
author = {Curley, Julia B. and Hert, Clayton and Bernskoetter, Wesley H. and Hazari, Nilay and Mercado, Brandon Q.},
abstractNote = {A novel pincer ligand, i PrPNPhP [PhN- (CH2CH2PiPr2)2], which is an analogue of the versatile MACHO ligand, iPrPNHP [HN(CH2CH2PiPr2)2], was synthesized and characterized. The ligand was coordinated to ruthenium, and a series of hydride-containing complexes were isolated and characterized by NMR and IR spectroscopies, as well as X-ray diffraction. Comparisons to previously published analogues ligated by iPrPNHP and iPrPNMeP [CH3N(CH2CH2PiPr2)2] illustrate that there are large changes in the coordination chemistry that occur when the nitrogen substituent of the pincer ligand is altered. For example, ruthenium hydrides supported by the iPrPNPhP ligand always form the syn isomer (where syn/anti refer to the relative orientation of the group on nitrogen and the hydride ligand on ruthenium), whereas complexes supported by iPrPNHP form the anti isomer and complexes supported by iPrPNMeP form a mixture of syn and anti isomers. We evaluated the impact of the nitrogen substituent of the pincer ligand in catalysis by comparing a series of iPrPNRP (R = H, Me, Ph)-ligated ruthenium hydride complexes as catalysts for formic acid dehydrogenation and carbon dioxide (CO2) hydrogenation to formate. The iPrPNPhP-ligated species is the most active for formic acid dehydrogenation, and mechanistic studies suggest that this is likely because there are kinetic advantages for catalysts that operate via the syn isomer. In CO2 hydrogenation, the iPrPNPhP-ligated species is again the most active under our optimal conditions, and we report some of the highest turnover frequencies for homogeneous catalysts. Experimental and theoretical insights into the turnover-limiting step of catalysis provide a basis for the observed trends in catalytic activity. Additionally, the stability of our complexes enabled us to detect a previously unobserved autocatalytic effect involving the base that is added to drive the reaction. Overall, by modifying the nitrogen substituent on the MACHO ligand, we have developed highly active catalysts for formic acid dehydrogenation and CO2 hydrogenation and also provided a framework for future catalyst development.},
doi = {10.1021/acs.inorgchem.1c03372},
journal = {Inorganic Chemistry},
number = 1,
volume = 61,
place = {United States},
year = {Sat Dec 25 00:00:00 EST 2021},
month = {Sat Dec 25 00:00:00 EST 2021}
}

Works referenced in this record:

Synthesis and characterization of rhenium( iii ) complexes with (Ph 2 PCH 2 CH 2 ) 2 NR diphosphinoamine ligands
journal, January 2017

  • Salvarese, Nicola; Refosco, Fiorenzo; Seraglia, Roberta
  • Dalton Transactions, Vol. 46, Issue 28
  • DOI: 10.1039/C7DT01032J

Cobalt Pincer Complexes for Catalytic Reduction of Carboxylic Acid Esters
journal, December 2017

  • Junge, Kathrin; Wendt, Bianca; Cingolani, Andrea
  • Chemistry - A European Journal, Vol. 24, Issue 5
  • DOI: 10.1002/chem.201705201

Additive‐Free Formic Acid Dehydrogenation Using a Pincer‐Supported Iron Catalyst
journal, February 2020

  • Curley, Julia B.; Bernskoetter, Wesley H.; Hazari, Nilay
  • ChemCatChem, Vol. 12, Issue 7
  • DOI: 10.1002/cctc.202000066

Cobalt‐Catalyzed Aqueous Dehydrogenation of Formic Acid
journal, May 2019

  • Zhou, Wei; Wei, Zhihong; Spannenberg, Anke
  • Chemistry – A European Journal, Vol. 25, Issue 36
  • DOI: 10.1002/chem.201805612

Alcohol-Assisted Hydrogenation of Carbon Monoxide to Methanol Using Molecular Manganese Catalysts
journal, January 2021


Mechanism of CO 2 hydrogenation to formates by homogeneous Ru-PNP pincer catalyst: from a theoretical description to performance optimization
journal, January 2014

  • Filonenko, Georgy A.; Hensen, Emiel J. M.; Pidko, Evgeny A.
  • Catal. Sci. Technol., Vol. 4, Issue 10
  • DOI: 10.1039/C4CY00568F

First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands
journal, October 2018


Carbon Dioxide Insertion into Group 9 and 10 Metal–Element σ Bonds
journal, November 2017


Metal-Ligand Cooperation
journal, September 2015

  • Khusnutdinova, Julia R.; Milstein, David
  • Angewandte Chemie International Edition, Vol. 54, Issue 42
  • DOI: 10.1002/anie.201503873

A prolific catalyst for dehydrogenation of neat formic acid
journal, April 2016

  • Celaje, Jeff Joseph A.; Lu, Zhiyao; Kedzie, Elyse A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11308

Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO 2 Reduction Catalyst
journal, June 2011

  • Schmeier, Timothy J.; Dobereiner, Graham E.; Crabtree, Robert H.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja2035514

Molecularly Defined Manganese Catalyst for Low-Temperature Hydrogenation of Carbon Monoxide to Methanol
journal, September 2019

  • Ryabchuk, Pavel; Stier, Kenta; Junge, Kathrin
  • Journal of the American Chemical Society, Vol. 141, Issue 42
  • DOI: 10.1021/jacs.9b08990

Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP-Pincer Catalyst
journal, April 2014

  • Filonenko, Georgy A.; van Putten, Robbert; Schulpen, Erik N.
  • ChemCatChem, Vol. 6, Issue 6
  • DOI: 10.1002/cctc.201402119

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

Efficient H 2 generation from formic acid using azole complexes in water
journal, January 2014

  • Manaka, Yuichi; Wang, Wan-Hui; Suna, Yuki
  • Catal. Sci. Technol., Vol. 4, Issue 1
  • DOI: 10.1039/C3CY00830D

Review: Pincer ligands—Tunable, versatile and applicable
journal, March 2018


Hydrogenation of Esters to Alcohols with a Well-Defined Iron Complex
journal, May 2014

  • Werkmeister, Svenja; Junge, Kathrin; Wendt, Bianca
  • Angewandte Chemie International Edition, Vol. 53, Issue 33
  • DOI: 10.1002/anie.201402542

Selective Iron-Catalyzed N -Formylation of Amines using Dihydrogen and Carbon Dioxide
journal, January 2018


Iron-Catalyzed Amide Formation from the Dehydrogenative Coupling of Alcohols and Secondary Amines
journal, May 2017


Ligand-Controlled Cobalt-Catalyzed Transfer Hydrogenation of Alkynes: Stereodivergent Synthesis of Z - and E- Alkenes
journal, June 2016

  • Fu, Shaomin; Chen, Nan-Yu; Liu, Xufang
  • Journal of the American Chemical Society, Vol. 138, Issue 27
  • DOI: 10.1021/jacs.6b04271

A Family of Active Iridium Catalysts for Transfer Hydrogenation of Ketones
journal, August 2006

  • Clarke, Zaheer E.; Maragh, Paul T.; Dasgupta, Tara P.
  • Organometallics, Vol. 25, Issue 17
  • DOI: 10.1021/om060049z

Cobalt aminodiphosphine complexes as catalysts in the oxidation of n-octane
journal, January 2015

  • Naicker, Dunesha; Friedrich, Holger B.; Omondi, Bernard
  • RSC Advances, Vol. 5, Issue 77
  • DOI: 10.1039/C5RA07365K

Efficient Reversible Hydrogen Carrier System Based on Amine Reforming of Methanol
journal, February 2017

  • Kothandaraman, Jotheeswari; Kar, Sayan; Sen, Raktim
  • Journal of the American Chemical Society, Vol. 139, Issue 7
  • DOI: 10.1021/jacs.6b11637

Highly efficient additive-free dehydrogenation of neat formic acid
journal, February 2021


Cooperative Aliphatic PNP Amido Pincer Ligands - Versatile Building Blocks for Coordination Chemistry and Catalysis
journal, November 2011

  • Schneider, Sven; Meiners, Jenni; Askevold, Bjorn
  • European Journal of Inorganic Chemistry, Vol. 2012, Issue 3
  • DOI: 10.1002/ejic.201100880

Highly Efficient Ruthenium-Catalyzed N-Formylation of Amines with H 2 and CO 2
journal, April 2015

  • Zhang, Lei; Han, Zhaobin; Zhao, Xiaoyu
  • Angewandte Chemie International Edition, Vol. 54, Issue 21
  • DOI: 10.1002/anie.201500939

Selective conversion of glycerol to lactic acid with iron pincer precatalysts
journal, January 2015

  • Sharninghausen, Liam S.; Mercado, Brandon Q.; Crabtree, Robert H.
  • Chemical Communications, Vol. 51, Issue 90
  • DOI: 10.1039/C5CC06857F

Cobalt-catalyzed transfer hydrogenation of CO and CN bonds
journal, January 2013

  • Zhang, Guoqi; Hanson, Susan K.
  • Chemical Communications, Vol. 49, Issue 86
  • DOI: 10.1039/c3cc45900d

Catalytic Hydrogenation of Esters. Development of an Efficient Catalyst and Processes for Synthesising ( R )-1,2-Propanediol and 2-( l -Menthoxy)ethanol
journal, November 2011

  • Kuriyama, Wataru; Matsumoto, Takaji; Ogata, Osamu
  • Organic Process Research & Development, Vol. 16, Issue 1
  • DOI: 10.1021/op200234j

Bond Activation and Catalysis by Ruthenium Pincer Complexes
journal, November 2014

  • Gunanathan, Chidambaram; Milstein, David
  • Chemical Reviews, Vol. 114, Issue 24
  • DOI: 10.1021/cr5002782

Ruthenium-catalyzed hydrogen generation from glycerol and selective synthesis of lactic acid
journal, January 2015

  • Li, Yang; Nielsen, Martin; Li, Bin
  • Green Chemistry, Vol. 17, Issue 1
  • DOI: 10.1039/C4GC01707B

Unravelling the Mechanism of Basic Aqueous Methanol Dehydrogenation Catalyzed by Ru–PNP Pincer Complexes
journal, November 2016

  • Alberico, Elisabetta; Lennox, Alastair J. J.; Vogt, Lydia K.
  • Journal of the American Chemical Society, Vol. 138, Issue 45
  • DOI: 10.1021/jacs.6b05692

Improved Second Generation Iron Pincer Complexes for Effective Ester Hydrogenation
journal, January 2016

  • Elangovan, Saravanakumar; Wendt, Bianca; Topf, Christoph
  • Advanced Synthesis & Catalysis, Vol. 358, Issue 5
  • DOI: 10.1002/adsc.201500930

The Role of Proton Shuttles in the Reversible Activation of Hydrogen via Metal–Ligand Cooperation
journal, October 2019

  • Smith, Nicholas E.; Bernskoetter, Wesley H.; Hazari, Nilay
  • Journal of the American Chemical Society, Vol. 141, Issue 43
  • DOI: 10.1021/jacs.9b09062

Ruthenium-Catalyzed Urea Synthesis Using Methanol as the C1 Source
journal, December 2015


Amide versus amine ligand paradigm in the direct amination of alcohols with Ru-PNP complexes
journal, January 2018

  • Pingen, Dennis; Choi, Jong-Hoo; Allen, Henry
  • Catalysis Science & Technology, Vol. 8, Issue 15
  • DOI: 10.1039/C8CY00869H

Chemoselective semihydrogenation of alkynes catalyzed by manganese( i )-PNP pincer complexes
journal, January 2020

  • Garbe, Marcel; Budweg, Svenja; Papa, Veronica
  • Catalysis Science & Technology, Vol. 10, Issue 12
  • DOI: 10.1039/D0CY00992J

Hydrogen Generation at Ambient Conditions: Application in Fuel Cells
journal, September 2008


Contrasting reactivity behaviour of the [RuHCl(CO)(PNP)] complex with electrophilic reagents XOTf (X = H, CH 3 , Me 3 Si)
journal, January 2014

  • Ramaraj, A.; Nethaji, Munirathinam; Jagirdar, Balaji R.
  • Dalton Trans., Vol. 43, Issue 39
  • DOI: 10.1039/C4DT01570C

Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide
journal, February 2013

  • Nielsen, Martin; Alberico, Elisabetta; Baumann, Wolfgang
  • Nature, Vol. 495, Issue 7439
  • DOI: 10.1038/nature11891

Iron-Catalyzed Hydrogenation of Amides to Alcohols and Amines
journal, August 2016

  • Rezayee, Nomaan M.; Samblanet, Danielle C.; Sanford, Melanie S.
  • ACS Catalysis, Vol. 6, Issue 10
  • DOI: 10.1021/acscatal.6b01454

Osmium and Ruthenium Catalysts for Dehydrogenation of Alcohols
journal, July 2011

  • Bertoli, Marcello; Choualeb, Aldjia; Lough, Alan J.
  • Organometallics, Vol. 30, Issue 13
  • DOI: 10.1021/om200437n

Additive-Free Cobalt-Catalyzed Hydrogenation of Esters to Alcohols
journal, April 2017


Understanding the Mechanisms of Cobalt-Catalyzed Hydrogenation and Dehydrogenation Reactions
journal, May 2013

  • Zhang, Guoqi; Vasudevan, Kalyan V.; Scott, Brian L.
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja402679a

Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols
journal, October 2017


Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst
journal, March 2015

  • Bielinski, Elizabeth A.; Förster, Moritz; Zhang, Yuanyuan
  • ACS Catalysis, Vol. 5, Issue 4
  • DOI: 10.1021/acscatal.5b00137

Mechanistic Insights into Ruthenium-Pincer-Catalyzed Amine-Assisted Homogeneous Hydrogenation of CO 2 to Methanol
journal, February 2019

  • Kar, Sayan; Sen, Raktim; Kothandaraman, Jotheeswari
  • Journal of the American Chemical Society, Vol. 141, Issue 7
  • DOI: 10.1021/jacs.8b12763

Catalytic Solvolysis of Ammonia Borane
journal, October 2010

  • Graham, Todd W.; Tsang, Chi-Wing; Chen, Xuanhua
  • Angewandte Chemie International Edition, Vol. 49, Issue 46
  • DOI: 10.1002/anie.201003074

Iridium-Catalyzed Hydrogenation of Carboxylic Acid Esters
journal, September 2014


Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
journal, July 2014

  • Bielinski, Elizabeth A.; Lagaditis, Paraskevi O.; Zhang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505241x

Selective Iron-Catalyzed Deaminative Hydrogenation of Amides
journal, January 2017


Hydrogenation of Esters to Alcohols Catalyzed by Defined Manganese Pincer Complexes
journal, September 2016

  • Elangovan, Saravanakumar; Garbe, Marcel; Jiao, Haijun
  • Angewandte Chemie International Edition, Vol. 55, Issue 49
  • DOI: 10.1002/anie.201607233

Unprecedentedly High Formic Acid Dehydrogenation Activity on an Iridium Complex with an N , N ′-Diimine Ligand in Water
journal, July 2015

  • Wang, Zhijun; Lu, Sheng-Mei; Li, Jun
  • Chemistry - A European Journal, Vol. 21, Issue 36
  • DOI: 10.1002/chem.201502086

Sequential Hydrogenation of CO 2 to Methanol Using a Pincer Iron Catalyst
journal, July 2019


Hydrogenation of CO2, carbonyl and imine substrates catalyzed by [IrH3(PhPNHP)] complex
journal, March 2019


Long-range metal–ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid
journal, January 2013

  • Barnard, Jonathan H.; Wang, Chao; Berry, Neil G.
  • Chemical Science, Vol. 4, Issue 3
  • DOI: 10.1039/c2sc21923a

Selective Hydrogenation of Amides to Amines and Alcohols Catalyzed by Improved Iron Pincer Complexes
journal, May 2016


Tandem Amine and Ruthenium-Catalyzed Hydrogenation of CO 2 to Methanol
journal, January 2015

  • Rezayee, Nomaan M.; Huff, Chelsea A.; Sanford, Melanie S.
  • Journal of the American Chemical Society, Vol. 137, Issue 3
  • DOI: 10.1021/ja511329m

Iridium-PNP Pincer Complexes for Methanol Dehydrogenation at Low Base Concentration
journal, May 2017

  • Prichatz, Christoph; Alberico, Elisabetta; Baumann, Wolfgang
  • ChemCatChem, Vol. 9, Issue 11
  • DOI: 10.1002/cctc.201700015

Effective Pincer Cobalt Precatalysts for Lewis Acid Assisted CO 2 Hydrogenation
journal, July 2016


Catalytic Cross-Coupling of Secondary Alcohols
journal, February 2019

  • Thiyagarajan, Subramanian; Gunanathan, Chidambaram
  • Journal of the American Chemical Society, Vol. 141, Issue 9
  • DOI: 10.1021/jacs.9b00025

1355. Hydrido-complexes of iridium(III) stabilised by tertiary phosphines and arsines
journal, January 1965

  • Chatt, J.; Coffey, R. S.; Shaw, B. L.
  • Journal of the Chemical Society (Resumed)
  • DOI: 10.1039/jr9650007391

Chemoselective Hydrogenation of Nitroarenes Using an Air-Stable Base-Metal Catalyst
journal, March 2021


CO 2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO 2 Reduction
journal, August 2015


Amination of Aliphatic Alcohols and Diols with an Iridium Pincer Catalyst
journal, June 2010


Selective Hydrogen Production from Methanol with a Defined Iron Pincer Catalyst under Mild Conditions
journal, December 2013

  • Alberico, Elisabetta; Sponholz, Peter; Cordes, Christoph
  • Angewandte Chemie International Edition, Vol. 52, Issue 52
  • DOI: 10.1002/anie.201307224

Formic Acid as a Hydrogen Energy Carrier
journal, December 2016


Approaches to Sigma Complexes via Displacement of Agostic Interactions: An Experimental and Theoretical Investigation
journal, July 2017


Neutral Tridentate PNP Ligands and Their Hybrid Analogues: Versatile Non-Innocent Scaffolds for Homogeneous Catalysis
journal, October 2009

  • van der Vlugt, Jarl Ivar; Reek, Joost N. H.
  • Angewandte Chemie International Edition, Vol. 48, Issue 47
  • DOI: 10.1002/anie.200903193

Experimental Evidence of syn H–N–Fe–H Configurational Requirement for Iron-Based Bifunctional Hydrogenation Catalysts
journal, April 2021


Enhanced CO 2 electroreduction efficiency through secondary coordination effects on a pincer iridium catalyst
journal, January 2015

  • Ahn, Steven T.; Bielinski, Elizabeth A.; Lane, Elizabeth M.
  • Chemical Communications, Vol. 51, Issue 27
  • DOI: 10.1039/C5CC00458F

Platinum complexes with a methoxy-amino phosphine or a nitrogen-containing bis(phosphine) ligand. Synthesis, characterization and application to hydrogenation of trans -cinnamaldehyde
journal, January 2017


Dual Coordination Modes of Ethylene-Linked NP2 Ligands in Cobalt(II) and Nickel(II) Iodides
journal, September 2011

  • Dong, Qingchen; Rose, Michael J.; Wong, Wai-Yeung
  • Inorganic Chemistry, Vol. 50, Issue 20
  • DOI: 10.1021/ic201213c

Manganese-Catalyzed Sequential Hydrogenation of CO 2 to Methanol via Formamide
journal, August 2017


Iron catalyzed CO 2 hydrogenation to formate enhanced by Lewis acid co-catalysts
journal, January 2015

  • Zhang, Yuanyuan; MacIntosh, Alex D.; Wong, Janice L.
  • Chemical Science, Vol. 6, Issue 7
  • DOI: 10.1039/C5SC01467K

Catalytic Formic Acid Dehydrogenation and CO 2 Hydrogenation Using Iron PN R P Pincer Complexes with Isonitrile Ligands
journal, October 2018


A Molecular Iron Catalyst for the Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles
journal, June 2014

  • Chakraborty, Sumit; Brennessel, William W.; Jones, William D.
  • Journal of the American Chemical Society, Vol. 136, Issue 24
  • DOI: 10.1021/ja504523b

Catalytic Dehydrogenation of Formic Acid with Ruthenium‐PNP‐Pincer Complexes: Comparing N‐Methylated and NH‐Ligands
journal, March 2019

  • Agapova, Anastasiya; Alberico, Elisabetta; Kammer, Anja
  • ChemCatChem, Vol. 11, Issue 7
  • DOI: 10.1002/cctc.201801897

Influences of Bifunctional PNP-Pincer Ligands on Low Valent Cobalt Complexes Relevant to CO 2 Hydrogenation
journal, January 2018


Hydrogenation or Dehydrogenation of N-Containing Heterocycles Catalyzed by a Single Manganese Complex
journal, May 2020


Towards a Green Process for Bulk-Scale Synthesis of Ethyl Acetate: Efficient Acceptorless Dehydrogenation of Ethanol
journal, April 2012

  • Nielsen, Martin; Junge, Henrik; Kammer, Anja
  • Angewandte Chemie International Edition, Vol. 51, Issue 23
  • DOI: 10.1002/anie.201200625

Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts
journal, February 2017


Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a “Hydrogen-Borrowing” Strategy
journal, September 2016


Mild and Homogeneous Cobalt-Catalyzed Hydrogenation of CC, CO, and CN Bonds
journal, October 2012

  • Zhang, Guoqi; Scott, Brian L.; Hanson, Susan K.
  • Angewandte Chemie International Edition, Vol. 51, Issue 48
  • DOI: 10.1002/anie.201206051

Manganese Pincer Complexes for the Base-Free, Acceptorless Dehydrogenative Coupling of Alcohols to Esters: Development, Scope, and Understanding
journal, February 2017


Amine-Free Reversible Hydrogen Storage in Formate Salts Catalyzed by Ruthenium Pincer Complex without pH Control or Solvent Change
journal, March 2015

  • Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain
  • ChemSusChem, Vol. 8, Issue 8
  • DOI: 10.1002/cssc.201403458

Enabling storage and utilization of low-carbon electricity: power to formic acid
journal, January 2021

  • Chatterjee, Sudipta; Dutta, Indranil; Lum, Yanwei
  • Energy & Environmental Science, Vol. 14, Issue 3
  • DOI: 10.1039/D0EE03011B

Understanding the Reactivity and Decomposition of a Highly Active Iron Pincer Catalyst for Hydrogenation and Dehydrogenation Reactions
journal, August 2021

  • Curley, Julia B.; Smith, Nicholas E.; Bernskoetter, Wesley H.
  • ACS Catalysis, Vol. 11, Issue 16
  • DOI: 10.1021/acscatal.1c03347

Key factors in pincer ligand design
journal, January 2018

  • Peris, Eduardo; Crabtree, Robert H.
  • Chemical Society Reviews, Vol. 47, Issue 6
  • DOI: 10.1039/C7CS00693D

Iron-Based Catalysts for the Hydrogenation of Esters to Alcohols
journal, May 2014

  • Chakraborty, Sumit; Dai, Huiguang; Bhattacharya, Papri
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja504034q