DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fully kinetic simulations of strong steady-state collisional planar plasma shocks

Abstract

We report on simulations of strong, steady-state collisional planar plasma shocks with fully kinetic ions and electrons, independently confirmed by two fully kinetic codes (an Eulerian continuum and a Lagrangian particle-in-cell). While kinetic electrons do not fundamentally change the shock structure as compared with fluid electrons, we find an appreciable rearrangement of the preheat layer, associated with nonlocal electron heat transport effects. The electron heat-flux profile qualitatively agrees between kinetic- and fluid-electron models, suggesting a certain level of “stiffness,” though substantial nonlocality is observed in the kinetic heat flux. We also find good agreement with nonlocal electron heat-flux closures proposed in the literature. Finally, in contrast to the classical hydrodynamic picture, we find a significant collapse in the “precursor” electric-field shock at the preheat layer leading edge, which correlates with the electron-temperature gradient relaxation.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1834533
Report Number(s):
LA-UR-21-25938
Journal ID: ISSN 2470-0045; TRN: US2300179
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. E
Additional Journal Information:
Journal Volume: 104; Journal Issue: 5; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Anderson, Steven Edward, Chacon, Luis, Taitano, William T., Simakov, Andrei N., and Keenan, Brett D. Fully kinetic simulations of strong steady-state collisional planar plasma shocks. United States: N. p., 2021. Web. doi:10.1103/physreve.104.055205.
Anderson, Steven Edward, Chacon, Luis, Taitano, William T., Simakov, Andrei N., & Keenan, Brett D. Fully kinetic simulations of strong steady-state collisional planar plasma shocks. United States. https://doi.org/10.1103/physreve.104.055205
Anderson, Steven Edward, Chacon, Luis, Taitano, William T., Simakov, Andrei N., and Keenan, Brett D. Tue . "Fully kinetic simulations of strong steady-state collisional planar plasma shocks". United States. https://doi.org/10.1103/physreve.104.055205. https://www.osti.gov/servlets/purl/1834533.
@article{osti_1834533,
title = {Fully kinetic simulations of strong steady-state collisional planar plasma shocks},
author = {Anderson, Steven Edward and Chacon, Luis and Taitano, William T. and Simakov, Andrei N. and Keenan, Brett D.},
abstractNote = {We report on simulations of strong, steady-state collisional planar plasma shocks with fully kinetic ions and electrons, independently confirmed by two fully kinetic codes (an Eulerian continuum and a Lagrangian particle-in-cell). While kinetic electrons do not fundamentally change the shock structure as compared with fluid electrons, we find an appreciable rearrangement of the preheat layer, associated with nonlocal electron heat transport effects. The electron heat-flux profile qualitatively agrees between kinetic- and fluid-electron models, suggesting a certain level of “stiffness,” though substantial nonlocality is observed in the kinetic heat flux. We also find good agreement with nonlocal electron heat-flux closures proposed in the literature. Finally, in contrast to the classical hydrodynamic picture, we find a significant collapse in the “precursor” electric-field shock at the preheat layer leading edge, which correlates with the electron-temperature gradient relaxation.},
doi = {10.1103/physreve.104.055205},
journal = {Physical Review. E},
number = 5,
volume = 104,
place = {United States},
year = {Tue Nov 16 00:00:00 EST 2021},
month = {Tue Nov 16 00:00:00 EST 2021}
}

Works referenced in this record:

Deciphering the kinetic structure of multi-ion plasma shocks
journal, November 2017


Ion species stratification within strong shocks in two-ion plasmas
journal, March 2018

  • Keenan, Brett D.; Simakov, Andrei N.; Taitano, William T.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5020156

Kinetic simulation of a collisional shock wave in a plasma
journal, October 1991


Modeling and effects of nonlocal electron heat flow in planar shock waves
journal, May 1995

  • Vidal, F.; Matte, J. P.; Casanova, M.
  • Physics of Plasmas, Vol. 2, Issue 5
  • DOI: 10.1063/1.871357

Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging
journal, June 2015

  • Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.
  • Physics of Plasmas, Vol. 22, Issue 6
  • DOI: 10.1063/1.4921935

The structure of a shock wave in a fully ionized gas
journal, December 1957


Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution
journal, February 1959


Limiting Mach number of an embedded ion shock
journal, January 1973


Plasma ion stratification by weak planar shocks
journal, September 2017

  • Simakov, Andrei N.; Keenan, Brett D.; Taitano, William T.
  • Physics of Plasmas, Vol. 24, Issue 9
  • DOI: 10.1063/1.4995427

An improvement of the nonlocal heat flux formula
journal, January 1988

  • Bendib, A.; Luciani, J. F.; Matte, J. P.
  • Physics of Fluids, Vol. 31, Issue 4
  • DOI: 10.1063/1.866806

First Observations of Nonhydrodynamic Mix at the Fuel-Shell Interface in Shock-Driven Inertial Confinement Implosions
journal, April 2014


A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
journal, January 2000

  • Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
  • Physics of Plasmas, Vol. 7, Issue 10
  • DOI: 10.1063/1.1289512

An Eulerian Vlasov-Fokker–Planck algorithm for spherical implosion simulations of inertial confinement fusion capsules
journal, June 2021


Full particle-in-cell simulation of the formation and structure of a collisional plasma shock wave
journal, February 2021


Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation
journal, May 2008

  • Bowers, K. J.; Albright, B. J.; Yin, L.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2840133

Hydrodynamic description of an unmagnetized plasma with multiple ion species. I. General formulation
journal, March 2016

  • Simakov, Andrei N.; Molvig, Kim
  • Physics of Plasmas, Vol. 23, Issue 3
  • DOI: 10.1063/1.4943894

Electron Heat Transport down Steep Temperature Gradients
journal, December 1982


A conservative phase-space moving-grid strategy for a 1D-2V Vlasov–Fokker–Planck Solver
journal, January 2021


Kinetic simulation of a plasma collision experiment
journal, August 1993

  • Larroche, Olivier
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 8
  • DOI: 10.1063/1.860670

Structure of a Plasma Shock Wave
journal, January 1964

  • Jaffrin, Michel Y.; Probstein, Ronald F.
  • Physics of Fluids, Vol. 7, Issue 10
  • DOI: 10.1063/1.1711072

Shock wave structure for a fully ionized plasma
journal, April 2011


Advances in petascale kinetic plasma simulation with VPIC and Roadrunner
journal, July 2009


Ion kinetic simulations of the formation and propagation of a planar collisional shock wave in a plasma
journal, September 1993

  • Vidal, F.; Matte, J. P.; Casanova, M.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 9
  • DOI: 10.1063/1.860654

Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating
journal, May 2018

  • Taitano, W. T.; Simakov, A. N.; Chacón, L.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5024402

Exploration of the Transition from the Hydrodynamiclike to the Strongly Kinetic Regime in Shock-Driven Implosions
journal, May 2014


A multi-dimensional Vlasov-Fokker-Planck code for arbitrarily anisotropic high-energy-density plasmas
journal, May 2013

  • Tzoufras, M.; Tableman, A.; Tsung, F. S.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4801750

Instability of the interface of two gases accelerated by a shock wave
journal, January 1972


An adaptive, implicit, conservative, 1D-2V multi-species Vlasov–Fokker–Planck multi-scale solver in planar geometry
journal, July 2018


Nonlocal Heat Transport Due to Steep Temperature Gradients
journal, October 1983


An efficient, conservative, time-implicit solver for the fully kinetic arbitrary-species 1D-2V Vlasov-Ampère system
journal, October 2020


Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
journal, July 1964

  • Savitzky, Abraham.; Golay, M. J. E.
  • Analytical Chemistry, Vol. 36, Issue 8
  • DOI: 10.1021/ac60214a047

Electron transport in a collisional plasma with multiple ion species
journal, February 2014

  • Simakov, Andrei N.; Molvig, Kim
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4867183

Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations
journal, August 2015

  • Cao, Duc; Moses, Gregory; Delettrez, Jacques
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4928445

Nano- and micron-sized diamond genesis in nature: An overview
journal, November 2018