DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (Cu 1– x Ag x )(In 1– y Ga y )Te 2

Abstract

Owing to the diversity of composition and excellent transport properties, the ternary I-III-VI2type diamond-like chalcopyrite compounds are attractive functional semiconductors including as thermoelectric materials. In this family,CuInTe2 and CuGaTe2 are well investigated and achieve maximum ZT values of ~1.4 at 950 K and an average ZT of 0.43. However, both compounds have poor electrical conductivity at low temperature, resulting in low ZT below 450K. In this work, we have greatly improved the thermoelectric performance in the quinary diamondoid compound (Cu0.8Ag0.2)(In0.2Ga0.8)Te2 by understanding and controlling the effects of different constituent elements on the thermoelectric transport properties. Our combined theoretical and experimental effort indicates that Gain the In site of the lattice decreases the density-of-states carrier effective mass and improves the electrical conductivity and power factor of Cu0.8Ag0.2In1-xGaxTe2. Furthermore, Ag in the Cu site strongly suppresses the heat transport via the enhanced acoustic phonon-optical phonon coupling effects, leading to the ultra low thermal conductivity of ~0.49 Wm-1 K-1 at 850 K in Cu0.8Ag0.2In0.2Ga0.8Te2. Defect formation energy calculations suggest intrinsic Cu vacancies introduce defect levels that are important to the temperature-dependent hole density and electrical conductivity; therefore, we introduced extra Cu vacancies to optimize the hole carrier density and improve the power factormore » of Cu0.8Ag0.2In0.2Ga0.8Te2. Finally, as a result, a maximum ZT of ~1.5 at 850 K and an average ZT of 0.78 in the temperature range of 400-850 K are obtained, which is among the highest in the diamond-like compound family.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [2];  [3]; ORCiD logo [1];  [2]; ORCiD logo [2];  [3]; ORCiD logo [2]; ORCiD logo [1]
  1. Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
  2. Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
  3. Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
Publication Date:
Research Org.:
Northwestern Univ., Evanston, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Sciences Foundation (NSF); Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource
OSTI Identifier:
1858071
Alternate Identifier(s):
OSTI ID: 1834039
Grant/Contract Number:  
SC0014520; AC02-06CH11357; AC02-05CH11231; ECCS 2025633; DMR-1720139
Resource Type:
Published Article
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Name: Journal of the American Chemical Society Journal Volume: 143 Journal Issue: 15; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; thermal conductivity; phonons; defects in solids; defects; electrical conductivity

Citation Formats

Xie, Hongyao, Hao, Shiqiang, Bailey, Trevor P., Cai, Songting, Zhang, Yinying, Slade, Tyler J., Snyder, G. Jeffrey, Dravid, Vinayak P., Uher, Ctirad, Wolverton, Christopher, and Kanatzidis, Mercouri G. Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (Cu 1– x Ag x )(In 1– y Ga y )Te 2. United States: N. p., 2021. Web. doi:10.1021/jacs.1c01801.
Xie, Hongyao, Hao, Shiqiang, Bailey, Trevor P., Cai, Songting, Zhang, Yinying, Slade, Tyler J., Snyder, G. Jeffrey, Dravid, Vinayak P., Uher, Ctirad, Wolverton, Christopher, & Kanatzidis, Mercouri G. Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (Cu 1– x Ag x )(In 1– y Ga y )Te 2. United States. https://doi.org/10.1021/jacs.1c01801
Xie, Hongyao, Hao, Shiqiang, Bailey, Trevor P., Cai, Songting, Zhang, Yinying, Slade, Tyler J., Snyder, G. Jeffrey, Dravid, Vinayak P., Uher, Ctirad, Wolverton, Christopher, and Kanatzidis, Mercouri G. Tue . "Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (Cu 1– x Ag x )(In 1– y Ga y )Te 2". United States. https://doi.org/10.1021/jacs.1c01801.
@article{osti_1858071,
title = {Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (Cu 1– x Ag x )(In 1– y Ga y )Te 2},
author = {Xie, Hongyao and Hao, Shiqiang and Bailey, Trevor P. and Cai, Songting and Zhang, Yinying and Slade, Tyler J. and Snyder, G. Jeffrey and Dravid, Vinayak P. and Uher, Ctirad and Wolverton, Christopher and Kanatzidis, Mercouri G.},
abstractNote = {Owing to the diversity of composition and excellent transport properties, the ternary I-III-VI2type diamond-like chalcopyrite compounds are attractive functional semiconductors including as thermoelectric materials. In this family,CuInTe2 and CuGaTe2 are well investigated and achieve maximum ZT values of ~1.4 at 950 K and an average ZT of 0.43. However, both compounds have poor electrical conductivity at low temperature, resulting in low ZT below 450K. In this work, we have greatly improved the thermoelectric performance in the quinary diamondoid compound (Cu0.8Ag0.2)(In0.2Ga0.8)Te2 by understanding and controlling the effects of different constituent elements on the thermoelectric transport properties. Our combined theoretical and experimental effort indicates that Gain the In site of the lattice decreases the density-of-states carrier effective mass and improves the electrical conductivity and power factor of Cu0.8Ag0.2In1-xGaxTe2. Furthermore, Ag in the Cu site strongly suppresses the heat transport via the enhanced acoustic phonon-optical phonon coupling effects, leading to the ultra low thermal conductivity of ~0.49 Wm-1 K-1 at 850 K in Cu0.8Ag0.2In0.2Ga0.8Te2. Defect formation energy calculations suggest intrinsic Cu vacancies introduce defect levels that are important to the temperature-dependent hole density and electrical conductivity; therefore, we introduced extra Cu vacancies to optimize the hole carrier density and improve the power factor of Cu0.8Ag0.2In0.2Ga0.8Te2. Finally, as a result, a maximum ZT of ~1.5 at 850 K and an average ZT of 0.78 in the temperature range of 400-850 K are obtained, which is among the highest in the diamond-like compound family.},
doi = {10.1021/jacs.1c01801},
journal = {Journal of the American Chemical Society},
number = 15,
volume = 143,
place = {United States},
year = {Tue Apr 13 00:00:00 EDT 2021},
month = {Tue Apr 13 00:00:00 EDT 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/jacs.1c01801

Save / Share:

Works referenced in this record:

High thermoelectric cooling performance of n-type Mg 3 Bi 2 -based materials
journal, July 2019


Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu 2 Se Composites
journal, September 2020


Large Thermal Conductivity Drops in the Diamondoid Lattice of CuFeS 2 by Discordant Atom Doping
journal, November 2019

  • Xie, Hongyao; Su, Xianli; Hao, Shiqiang
  • Journal of the American Chemical Society, Vol. 141, Issue 47
  • DOI: 10.1021/jacs.9b10983

Origin of Intrinsically Low Thermal Conductivity in Talnakhite Cu 17.6 Fe 17.6 S 32 Thermoelectric Material: Correlations between Lattice Dynamics and Thermal Transport
journal, June 2019

  • Xie, Hongyao; Su, Xianli; Zhang, Xiaomi
  • Journal of the American Chemical Society, Vol. 141, Issue 27
  • DOI: 10.1021/jacs.9b05072

Thermoelectric properties of Ag 1− x GaTe 2 with chalcopyrite structure
journal, August 2011

  • Yusufu, Aikebaier; Kurosaki, Ken; Kosuga, Atsuko
  • Applied Physics Letters, Vol. 99, Issue 6
  • DOI: 10.1063/1.3617458

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe 2 : Synergistic Effect of Resonance Level and Valence Band Convergence
journal, September 2016

  • Banik, Ananya; Shenoy, U. Sandhya; Saha, Sujoy
  • Journal of the American Chemical Society, Vol. 138, Issue 39
  • DOI: 10.1021/jacs.6b08382

All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance
journal, January 2013

  • Zhao, L. D.; Wu, H. J.; Hao, S. Q.
  • Energy & Environmental Science, Vol. 6, Issue 11
  • DOI: 10.1039/c3ee42187b

Low-Symmetry Rhombohedral GeTe Thermoelectrics
journal, May 2018


Origin of the Distinct Thermoelectric Transport Properties of Chalcopyrite ABTe 2 (A = Cu, Ag; B = Ga, In)
journal, September 2020

  • Cao, Yu; Su, Xianli; Meng, Fanchen
  • Advanced Functional Materials, Vol. 30, Issue 51
  • DOI: 10.1002/adfm.202005861

A simple effective potential for exchange
journal, June 2006

  • Becke, Axel D.; Johnson, Erin R.
  • The Journal of Chemical Physics, Vol. 124, Issue 22
  • DOI: 10.1063/1.2213970

Low-temperature transport properties of p -type CoSb 3
journal, April 1995


Convergence of electronic bands for high performance bulk thermoelectrics
journal, May 2011

  • Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron
  • Nature, Vol. 473, Issue 7345, p. 66-69
  • DOI: 10.1038/nature09996

Progressive Regulation of Electrical and Thermal Transport Properties to High-Performance CuInTe 2 Thermoelectric Materials
journal, April 2016

  • Luo, Yubo; Yang, Junyou; Jiang, Qinghui
  • Advanced Energy Materials, Vol. 6, Issue 12
  • DOI: 10.1002/aenm.201600007

Chemical Insights into PbSe– x %HgSe: High Power Factor and Improved Thermoelectric Performance by Alloying with Discordant Atoms
journal, November 2018

  • Hodges, James M.; Hao, Shiqiang; Grovogui, Jann A.
  • Journal of the American Chemical Society, Vol. 140, Issue 51
  • DOI: 10.1021/jacs.8b11050

Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence
journal, April 2017


Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n -Type Mg 2 Si 1 x Sn x Solid Solutions
journal, April 2012


Physical problems of thermoelectricity
journal, January 1959


Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View
journal, March 2006

  • Tritt, Terry M.; Subramanian, M. A.
  • MRS Bulletin, Vol. 31, Issue 3
  • DOI: 10.1557/mrs2006.44

High-performance bulk thermoelectrics with all-scale hierarchical architectures
journal, September 2012

  • Biswas, Kanishka; He, Jiaqing; Blum, Ivan D.
  • Nature, Vol. 489, Issue 7416, p. 414-418
  • DOI: 10.1038/nature11439

High Thermoelectric Performance in PbSe–NaSbSe 2 Alloys from Valence Band Convergence and Low Thermal Conductivity
journal, July 2019

  • Slade, Tyler J.; Bailey, Trevor P.; Grovogui, Jann A.
  • Advanced Energy Materials, Vol. 9, Issue 30
  • DOI: 10.1002/aenm.201901377

Chalcopyrite CuGaTe2: A High-Efficiency Bulk Thermoelectric Material
journal, June 2012

  • Plirdpring, Theerayuth; Kurosaki, Ken; Kosuga, Atsuko
  • Advanced Materials, Vol. 24, Issue 27
  • DOI: 10.1002/adma.201200732

Advanced Thermoelectric Design: From Materials and Structures to Devices
journal, July 2020


The Role of Zn in Chalcopyrite CuFeS 2 : Enhanced Thermoelectric Properties of Cu 1- x Zn x FeS 2 with In Situ Nanoprecipitates
journal, October 2016

  • Xie, Hongyao; Su, Xianli; Zheng, Gang
  • Advanced Energy Materials, Vol. 7, Issue 3
  • DOI: 10.1002/aenm.201601299

Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential
journal, June 2009


All-Inorganic Halide Perovskites as Potential Thermoelectric Materials: Dynamic Cation off-Centering Induces Ultralow Thermal Conductivity
journal, April 2020

  • Xie, Hongyao; Hao, Shiqiang; Bao, Jinke
  • Journal of the American Chemical Society, Vol. 142, Issue 20
  • DOI: 10.1021/jacs.0c03427

Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
journal, April 2014

  • Zhao, Li-Dong; Lo, Shih-Han; Zhang, Yongsheng
  • Nature, Vol. 508, Issue 7496, p. 373-377
  • DOI: 10.1038/nature13184

Model for Lattice Thermal Conductivity at Low Temperatures
journal, February 1959


Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure
journal, January 2012

  • Liu, Ruiheng; Xi, Lili; Liu, Huili
  • Chemical Communications, Vol. 48, Issue 32
  • DOI: 10.1039/c2cc30318c

Advances in thermoelectric materials research: Looking back and moving forward
journal, September 2017


Phonon-phonon interactions in transition metals
journal, September 2011


Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials
journal, January 2020

  • Jiang, Binbin; Liu, Xixi; Wang, Qi
  • Energy & Environmental Science, Vol. 13, Issue 2
  • DOI: 10.1039/C9EE03410B

First-Principles Determination of the Soft Mode in Cubic ZrO 2
journal, May 1997


Skutterudite antimonides: Quasilinear bands and unusual transport
journal, October 1994


High Thermoelectric Performance and Enhanced Mechanical Stability of p -type Ge 1– x Sb x Te
journal, October 2015


Thermoelectric materials step up
journal, June 2016

  • Shi, Xun; Chen, Lidong
  • Nature Materials, Vol. 15, Issue 7
  • DOI: 10.1038/nmat4643

Compromise and Synergy in High-Efficiency Thermoelectric Materials
journal, March 2017


Effect of Point Imperfections on Lattice Thermal Conductivity
journal, November 1960


Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance
journal, February 2018

  • Zheng, Zheng; Su, Xianli; Deng, Rigui
  • Journal of the American Chemical Society, Vol. 140, Issue 7
  • DOI: 10.1021/jacs.7b13611

Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu 2 Se
journal, January 2017

  • Olvera, A. A.; Moroz, N. A.; Sahoo, P.
  • Energy & Environmental Science, Vol. 10, Issue 7
  • DOI: 10.1039/C7EE01193H

Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics
journal, April 2015


Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3
journal, July 2014

  • Wu, H. J.; Zhao, L. -D.; Zheng, F. S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5515

New and Old Concepts in Thermoelectric Materials
journal, November 2009

  • Sootsman, Joseph R.; Chung, Duck Young; Kanatzidis, Mercouri G.
  • Angewandte Chemie International Edition, Vol. 48, Issue 46, p. 8616-8639
  • DOI: 10.1002/anie.200900598

Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence
journal, April 2015

  • Tan, Gangjian; Shi, Fengyuan; Hao, Shiqiang
  • Journal of the American Chemical Society, Vol. 137, Issue 15
  • DOI: 10.1021/jacs.5b00837

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Ultralow thermal conductivity in diamondoid lattices: high thermoelectric performance in chalcopyrite Cu 0.8+y Ag 0.2 In 1−y Te 2
journal, January 2020

  • Xie, Hongyao; Hao, Shiqiang; Cai, Songting
  • Energy & Environmental Science, Vol. 13, Issue 10
  • DOI: 10.1039/D0EE02323J

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Superparamagnetic enhancement of thermoelectric performance
journal, September 2017

  • Zhao, Wenyu; Liu, Zhiyuan; Sun, Zhigang
  • Nature, Vol. 549, Issue 7671
  • DOI: 10.1038/nature23667

Strained endotaxial nanostructures with high thermoelectric figure of merit
journal, January 2011

  • Biswas, Kanishka; He, Jiaqing; Zhang, Qichun
  • Nature Chemistry, Vol. 3, Issue 2
  • DOI: 10.1038/nchem.955

Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance
journal, January 2018

  • Zhang, Qian; Song, Qichen; Wang, Xinyu
  • Energy & Environmental Science, Vol. 11, Issue 4
  • DOI: 10.1039/C8EE00112J

Optimized thermoelectric properties in pseudocubic diamond-like CuGaTe 2 compounds
journal, January 2016

  • Qin, Yuting; Qiu, Pengfei; Liu, Ruiheng
  • Journal of Materials Chemistry A, Vol. 4, Issue 4
  • DOI: 10.1039/C5TA09584K

Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu 2 Se 1-x I x
journal, September 2013


Thermoelectric performance of Cu 1−x−δ Ag x InTe 2 diamond-like materials with a pseudocubic crystal structure
journal, January 2016

  • Liu, Ruiheng; Qin, Yuting; Cheng, Nian
  • Inorganic Chemistry Frontiers, Vol. 3, Issue 9
  • DOI: 10.1039/C6QI00162A

Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe
journal, July 2016

  • Tan, Gangjian; Shi, Fengyuan; Hao, Shiqiang
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12167

Design of Domain Structure and Realization of Ultralow Thermal Conductivity for Record‐High Thermoelectric Performance in Chalcopyrite
journal, November 2019


Realizing zT of 2.3 in Ge 1− x y Sb x In y Te via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping
journal, January 2018


High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction
journal, January 2017

  • Zheng, Gang; Su, Xianli; Xie, Hongyao
  • Energy & Environmental Science, Vol. 10, Issue 12
  • DOI: 10.1039/C7EE02677C

Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFe S 2 -based thermoelectric materials
journal, February 2020


Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals
journal, January 2016

  • Peng, Kunling; Lu, Xu; Zhan, Heng
  • Energy & Environmental Science, Vol. 9, Issue 2
  • DOI: 10.1039/C5EE03366G

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


Copper ion liquid-like thermoelectrics
journal, March 2012

  • Liu, Huili; Shi, Xun; Xu, Fangfang
  • Nature Materials, Vol. 11, Issue 5, p. 422-425
  • DOI: 10.1038/nmat3273

Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe
journal, November 2015


High-performance nanostructured thermoelectric materials
journal, October 2010


Seeking new, highly effective thermoelectrics
journal, March 2020


Rashba Effect Maximizes Thermoelectric Performance of GeTe Derivatives
journal, September 2020