DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Clustering instabilities in sedimenting fluid–solid systems: critical assessment of kinetic-theory-based predictions using direct numerical simulation data

Abstract

In this paper the quantitative and qualitative ability of a kinetic-theory-based two-fluid model (KT-TFM) is assessed in a state of fully periodic sedimentation (fluidization), with a focus on statistically steady, unstable (clustered) states. The accuracy of KT-TFM predictions is evaluated via direct comparison to direct numerical simulation (DNS) data. The KT-TFM and DNS results span a rather wide parameter space: mean-flow Reynolds numbers on the order of 1 and 10, mean solid volume fractions from 0.1 to 0.4, solid-to-fluid density ratios from 10 to 1000 and elastic and moderately inelastic (restitution coefficient of 0.9) conditions. Data from both KT-TFM and DNS display a rich variety of statistically steady yet unstable structures (clusters). Instantaneous snapshots of KT-TFM and DNS demonstrate remarkable qualitative agreement. This qualitative agreement is quantified by calculating the critical density ratio at which the structure transitions from a chaotic, dynamic state to a regular, plug-flow state, with good overall comparisons. Further quantitative assessments of mean and fluctuating velocities show good agreement at high density ratios but weaker agreement at intermediate to low density ratios depending on the mean-flow Reynolds numbers and solid fractions. Deviations of the KT-TFM results from the DNS data were traced to a breakdown inmore » one of the underlying assumptions of the kinetic theory derivation: high thermal Stokes number. Surprisingly, however, even though the low Knudsen number assumption, also associated with the kinetic theory derivation, is violated throughout most of the parameter space, it does not seem to affect the good quantitative accuracy of KT-TFM simulations.« less

Authors:
ORCiD logo [1];  [2];  [3];  [1]
  1. Univ. of Colorado, Boulder, CO (United States)
  2. Harbin Inst. of Technology (China)
  3. Colorado School of Mines, Golden, CO (United States)
Publication Date:
Research Org.:
Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1832979
Grant/Contract Number:  
FE0026298
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Fluid Mechanics
Additional Journal Information:
Journal Volume: 823; Journal ID: ISSN 0022-1120
Publisher:
Cambridge University Press
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; clustering instability; multiphase flow; kinetic-theory-based two-fluid model

Citation Formats

Fullmer, William D., Liu, Guodong, Yin, Xiaolong, and Hrenya, Christine M. Clustering instabilities in sedimenting fluid–solid systems: critical assessment of kinetic-theory-based predictions using direct numerical simulation data. United States: N. p., 2017. Web. doi:10.1017/jfm.2017.295.
Fullmer, William D., Liu, Guodong, Yin, Xiaolong, & Hrenya, Christine M. Clustering instabilities in sedimenting fluid–solid systems: critical assessment of kinetic-theory-based predictions using direct numerical simulation data. United States. https://doi.org/10.1017/jfm.2017.295
Fullmer, William D., Liu, Guodong, Yin, Xiaolong, and Hrenya, Christine M. Tue . "Clustering instabilities in sedimenting fluid–solid systems: critical assessment of kinetic-theory-based predictions using direct numerical simulation data". United States. https://doi.org/10.1017/jfm.2017.295. https://www.osti.gov/servlets/purl/1832979.
@article{osti_1832979,
title = {Clustering instabilities in sedimenting fluid–solid systems: critical assessment of kinetic-theory-based predictions using direct numerical simulation data},
author = {Fullmer, William D. and Liu, Guodong and Yin, Xiaolong and Hrenya, Christine M.},
abstractNote = {In this paper the quantitative and qualitative ability of a kinetic-theory-based two-fluid model (KT-TFM) is assessed in a state of fully periodic sedimentation (fluidization), with a focus on statistically steady, unstable (clustered) states. The accuracy of KT-TFM predictions is evaluated via direct comparison to direct numerical simulation (DNS) data. The KT-TFM and DNS results span a rather wide parameter space: mean-flow Reynolds numbers on the order of 1 and 10, mean solid volume fractions from 0.1 to 0.4, solid-to-fluid density ratios from 10 to 1000 and elastic and moderately inelastic (restitution coefficient of 0.9) conditions. Data from both KT-TFM and DNS display a rich variety of statistically steady yet unstable structures (clusters). Instantaneous snapshots of KT-TFM and DNS demonstrate remarkable qualitative agreement. This qualitative agreement is quantified by calculating the critical density ratio at which the structure transitions from a chaotic, dynamic state to a regular, plug-flow state, with good overall comparisons. Further quantitative assessments of mean and fluctuating velocities show good agreement at high density ratios but weaker agreement at intermediate to low density ratios depending on the mean-flow Reynolds numbers and solid fractions. Deviations of the KT-TFM results from the DNS data were traced to a breakdown in one of the underlying assumptions of the kinetic theory derivation: high thermal Stokes number. Surprisingly, however, even though the low Knudsen number assumption, also associated with the kinetic theory derivation, is violated throughout most of the parameter space, it does not seem to affect the good quantitative accuracy of KT-TFM simulations.},
doi = {10.1017/jfm.2017.295},
journal = {Journal of Fluid Mechanics},
number = ,
volume = 823,
place = {United States},
year = {Tue Jun 20 00:00:00 EDT 2017},
month = {Tue Jun 20 00:00:00 EDT 2017}
}

Works referenced in this record:

A quadrature-based moment method for dilute fluid-particle flows
journal, February 2008

  • Desjardins, O.; Fox, R. O.; Villedieu, P.
  • Journal of Computational Physics, Vol. 227, Issue 4
  • DOI: 10.1016/j.jcp.2007.10.026

Micromechanical modeling and analysis of different flow regimes in gas fluidization
journal, December 2012


An approach for drag correction based on the local heterogeneity for gas-solid flows
journal, October 2016

  • Li, Tingwen; Wang, Limin; Rogers, William
  • AIChE Journal, Vol. 63, Issue 4
  • DOI: 10.1002/aic.15507

Cluster characteristics of Geldart Group B particles in a pilot-scale CFB riser. I. Monodisperse systems
journal, January 2012


A fully coupled quadrature-based moment method for dilute to moderately dilute fluid–particle flows
journal, April 2010


The effects of particle and gas properties on the fluidization of Geldart A particles
journal, August 2005

  • Ye, M.; van der Hoef, M. A.; Kuipers, J. A. M.
  • Chemical Engineering Science, Vol. 60, Issue 16
  • DOI: 10.1016/j.ces.2005.03.017

Simulations of heat transfer to solid particles flowing through an array of heated tubes
journal, June 2016


An assessment of the ability of computational fluid dynamic models to predict reactive gas–solid flows in a fluidized bed
journal, January 2012


Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres
journal, January 2007

  • Beetstra, R.; van der Hoef, M. A.; Kuipers, J. A. M.
  • AIChE Journal, Vol. 53, Issue 2
  • DOI: 10.1002/aic.11065

Effect of Clustering on Gas−Solid Drag in Dilute Two-Phase Flow
journal, June 2004

  • Heynderickx, Geraldine J.; Das, Asit K.; De Wilde, Juray
  • Industrial & Engineering Chemistry Research, Vol. 43, Issue 16
  • DOI: 10.1021/ie034122m

Are continuum predictions of clustering chaotic?
journal, March 2017

  • Fullmer, William D.; Hrenya, Christine M.
  • Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 27, Issue 3
  • DOI: 10.1063/1.4977513

Design principles for bounded higher-order convection schemes – a unified approach
journal, May 2007


A drag model for filtered Euler–Lagrange simulations of clustered gas–particle suspensions
journal, September 2014


Large-Eddy-Simulation Tools for Multiphase Flows
journal, January 2012


Fluid Mechanical Description of Fluidized Beds. Stability of State of Uniform Fluidization
journal, February 1968

  • Anderson, T. B.; Jackson, Roy
  • Industrial & Engineering Chemistry Fundamentals, Vol. 7, Issue 1
  • DOI: 10.1021/i160025a003

Discrete particle simulation of two-dimensional fluidized bed
journal, October 1993


Equation of State for Nonattracting Rigid Spheres
journal, July 1969

  • Carnahan, Norman F.; Starling, Kenneth E.
  • The Journal of Chemical Physics, Vol. 51, Issue 2
  • DOI: 10.1063/1.1672048

An Euler–Lagrange strategy for simulating particle-laden flows
journal, April 2013


Gas-particle flow in a vertical pipe with particle-particle interactions
journal, September 1989


The role of meso-scale structures in rapid gas–solid flows
journal, October 2001


Effect of a cluster on gas–solid drag from lattice Boltzmann simulations
journal, October 2013

  • Shah, Milinkumar T.; Utikar, Ranjeet P.; Tade, Moses O.
  • Chemical Engineering Science, Vol. 102
  • DOI: 10.1016/j.ces.2013.08.010

Rheology of suspensions with high particle inertia and moderate fluid inertia
journal, April 2003

  • Wylie, Jonathan J.; Koch, Donald L.; Ladd, Anthony J. C.
  • Journal of Fluid Mechanics, Vol. 480
  • DOI: 10.1017/S0022112002003531

Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force
journal, January 2016

  • Rubinstein, Gregory J.; Derksen, J. J.; Sundaresan, Sankaran
  • Journal of Fluid Mechanics, Vol. 788
  • DOI: 10.1017/jfm.2015.679

Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield
journal, March 1984


Particle Induced Turbulence
journal, June 1994

  • Tsuji, Y.; Tanaka, T.; Yonemura, S.
  • Applied Mechanics Reviews, Vol. 47, Issue 6S
  • DOI: 10.1115/1.3124444

Two- and Four-Way Coupled Euler–Lagrangian Large-Eddy Simulation of Turbulent Particle-Laden Channel Flow
journal, August 2008

  • Vreman, Bert; Geurts, Bernard J.; Deen, N. G.
  • Flow, Turbulence and Combustion, Vol. 82, Issue 1
  • DOI: 10.1007/s10494-008-9173-z

Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres
journal, November 2011


Inelastic microstructure in rapid granular flows of smooth disks
journal, January 1991

  • Hopkins, Mark A.; Louge, Michel Y.
  • Physics of Fluids A: Fluid Dynamics, Vol. 3, Issue 1
  • DOI: 10.1063/1.857863

Modeling of cluster structure-dependent drag with Eulerian approach for circulating fluidized beds
journal, March 2011


A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres
journal, October 2014

  • (Yali) Tang, Y.; (Frank) Peters, E. A. J. F.; (Hans) Kuipers, J. A. M.
  • AIChE Journal, Vol. 61, Issue 2
  • DOI: 10.1002/aic.14645

Kinetic-theory predictions of clustering instabilities in granular flows: beyond the small-Knudsen-number regime
journal, December 2013

  • Mitrano, Peter P.; Zenk, John R.; Benyahia, Sofiane
  • Journal of Fluid Mechanics, Vol. 738
  • DOI: 10.1017/jfm.2013.602

Particle clustering due to hydrodynamic interactions
journal, May 2000

  • Wylie, Jonathan J.; Koch, Donald L.
  • Physics of Fluids, Vol. 12, Issue 5
  • DOI: 10.1063/1.870351

Filtered and heterogeneity-based subgrid modifications for gas-solid drag and solid stresses in bubbling fluidized beds
journal, December 2013

  • Schneiderbauer, Simon; Pirker, Stefan
  • AIChE Journal, Vol. 60, Issue 3
  • DOI: 10.1002/aic.14321

A system-size independent validation of CFD-DEM for noncohesive particles: AIChE Letter: Particle Technology and Fluidization
journal, October 2015

  • LaMarche, Casey Q.; Liu, Peiyuan; Kellogg, Kevin M.
  • AIChE Journal, Vol. 61, Issue 12
  • DOI: 10.1002/aic.15057

Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: A tentative answer
journal, February 2009

  • Wang, Junwu; van der Hoef, M. A.; Kuipers, J. A. M.
  • Chemical Engineering Science, Vol. 64, Issue 3
  • DOI: 10.1016/j.ces.2008.09.028

Computation of flow patterns in circulating fluidized beds
journal, June 1990


Structure-dependent drag in gas–solid flows studied with direct numerical simulation
journal, September 2014


Quantitative assessment of fine-grid kinetic-theory-based predictions of mean-slip in unbounded fluidization
journal, October 2015

  • Fullmer, William D.; Hrenya, Christine M.
  • AIChE Journal, Vol. 62, Issue 1
  • DOI: 10.1002/aic.15052

Coarse grid simulation of bed expansion characteristics of industrial-scale gas–solid bubbling fluidized beds
journal, March 2010

  • Wang, Junwu; van der Hoef, M. A.; Kuipers, J. A. M.
  • Chemical Engineering Science, Vol. 65, Issue 6
  • DOI: 10.1016/j.ces.2009.12.004

Velocity distributions in homogeneous granular fluids: the free and the heated case
journal, September 1998


Numerical characterization and modeling of particle clustering in wall-bounded vertical risers
journal, June 2014

  • Capecelatro, Jesse; Pepiot, Perrine; Desjardins, Olivier
  • Chemical Engineering Journal, Vol. 245
  • DOI: 10.1016/j.cej.2014.02.040

Effect of Domain Size on Fluid–Particle Statistics in Homogeneous, Gravity-Driven, Cluster-Induced Turbulence
journal, December 2015

  • Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.
  • Journal of Fluids Engineering, Vol. 138, Issue 4
  • DOI: 10.1115/1.4031703

On multiphase turbulence models for collisional fluid–particle flows
journal, February 2014


From Bubbles to Clusters in Fluidized Beds
journal, August 1998


Effects of using two- versus three-dimensional computational modeling of fluidized beds
journal, February 2008


Enskog kinetic theory for monodisperse gas–solid flows
journal, September 2012

  • Garzó, V.; Tenneti, S.; Subramaniam, S.
  • Journal of Fluid Mechanics, Vol. 712
  • DOI: 10.1017/jfm.2012.404

Fine-grid simulations of gas-solids flow in a circulating fluidized bed
journal, May 2012


Clustering instability in dissipative gases
journal, March 1993


R APID G RANULAR F LOWS
journal, January 2003


Lattice-Boltzmann Simulations of Particle-Fluid Suspensions
journal, January 2001

  • Ladd, A. J. C.; Verberg, R.
  • Journal of Statistical Physics, Vol. 104, Issue 5/6, p. 1191-1251
  • DOI: 10.1023/A:1010414013942

Kinetic theory for a monodisperse gas–solid suspension
journal, October 1990

  • Koch, Donald L.
  • Physics of Fluids A: Fluid Dynamics, Vol. 2, Issue 10
  • DOI: 10.1063/1.857698

Meso-scale statistical properties of gas-solid flow-a direct numerical simulation (DNS) study
journal, September 2016

  • Liu, Xiaowen; Wang, Limin; Ge, Wei
  • AIChE Journal, Vol. 63, Issue 1
  • DOI: 10.1002/aic.15489

I NSTABILITIES IN F LUIDIZED B EDS
journal, January 2003


Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds
journal, August 2007


The Clustering Instability in Rapid Granular and Gas-Solid Flows
journal, January 2017


Filtered two-fluid models for fluidized gas-particle suspensions
journal, January 2008

  • Igci, Yesim; Andrews, Arthur T.; Sundaresan, Sankaran
  • AIChE Journal, Vol. 54, Issue 6
  • DOI: 10.1002/aic.11481

Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method
journal, July 1979


Multiscale Nature of Complex Fluid−Particle Systems
journal, October 2001

  • Li, Jinghai; Kwauk, Mooson
  • Industrial & Engineering Chemistry Research, Vol. 40, Issue 20
  • DOI: 10.1021/ie0011021

Interaction between particle clusters and particle-induced turbulence
journal, October 2002


On fluid–particle dynamics in fully developed cluster-induced turbulence
journal, September 2015

  • Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.
  • Journal of Fluid Mechanics, Vol. 780
  • DOI: 10.1017/jfm.2015.459

A functional subgrid drift velocity model for filtered drag prediction in dense fluidized bed
journal, May 2011

  • Parmentier, Jean-François; Simonin, Olivier; Delsart, Olivier
  • AIChE Journal, Vol. 58, Issue 4
  • DOI: 10.1002/aic.12647

Momentum and heat transfer in two-phase bubble flow—I. Theory
journal, April 1981


Impact of collisional versus viscous dissipation on flow instabilities in gas–solid systems
journal, June 2013

  • Yin, Xiaolong; Zenk, John R.; Mitrano, Peter P.
  • Journal of Fluid Mechanics, Vol. 727
  • DOI: 10.1017/jfm.2013.268

A lattice-Boltzmann simulation study of the drag coefficient of clusters of spheres
journal, September 2006


Verification of filtered two-fluid models for gas-particle flows in risers
journal, December 2010

  • Igci, Yesim; Sundaresan, Sankaran
  • AIChE Journal, Vol. 57, Issue 10
  • DOI: 10.1002/aic.12486

Particle-Resolved Direct Numerical Simulation for Gas-Solid Flow Model Development
journal, January 2014


Works referencing / citing this record:

A gas pressure gradient‐dependent subgrid drift velocity model for drag prediction in fluidized gas–particle flows
journal, December 2019

  • Jiang, Ming; Chen, Xiao; Zhou, Qiang
  • AIChE Journal, Vol. 66, Issue 4
  • DOI: 10.1002/aic.16884

Scale and structure dependent drag in gas–solid flows
journal, December 2019

  • Liu, Xiaowen; Ge, Wei; Wang, Limin
  • AIChE Journal, Vol. 66, Issue 4
  • DOI: 10.1002/aic.16883

PFEM–DEM for particle-laden flows with free surface
journal, May 2019

  • Franci, Alessandro; de-Pouplana, Ignasi; Casas, Guillermo
  • Computational Particle Mechanics, Vol. 7, Issue 1
  • DOI: 10.1007/s40571-019-00244-1