DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Single Nanoflake Photoelectrochemistry Reveals Intrananoflake Doping Heterogeneity That Explains Ensemble-Level Photoelectrochemical Behavior

Abstract

Transition metal dichalcogenide (TMD) nanoflake thin films are attractive electrode materials for photoelectrochemical (PEC) solar energy conversion and sensing applications, but their photocurrent quantum yields are generally lower than those of bulk TMD electrodes. The poor PEC performance has been primarily attributed to enhanced charge carrier recombination at exposed defect and edge sites introduced by the exfoliation process. In this work, a single nanoflake PEC approach reveals how an alternative effect, doping heterogeneity, limits ensemble-level PEC performance. Photocurrent mapping and local photocurrent–potential (i–E) measurements of MoS2 nanoflakes exfoliated from naturally occurring bulk crystals revealed the presence of n- and ptype domains within the same nanoflake. Interestingly, the n- and p-type domains in the natural MoS2 nanoflakes were equally efficient for iodide oxidation and tri-iodide reduction (IQE values exceed 80%). At the single domain-level, the natural MoS2 nanoflakes were nearly as efficient as nanoflakes exfoliated from synthetic n-type MoS2 crystals. Single domain-level i–E measurements explain why natural MoS2 nanoflakes exhibit an n-type to p-type photocurrent switching effect in ensemble-level measurements: the n- and p-type diode currents from individual domains oppose each other upon illuminating the entire nanoflake, resulting in zero photocurrent at the switching potential. The doping heterogeneity effect is likelymore » due to nonideal stoichiometry, where p-type domains are S-rich according to XPS measurements. Although this doping heterogeneity effect limits photoanode or photocathode performance, these findings open the possibility to synthesize efficient TMD nanoflake photocatalysts with well-defined lateral p- and n-type domains for enhanced charge separation.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Colorado State Univ., Fort Collins, CO (United States)
Publication Date:
Research Org.:
Colorado State Univ., Fort Collins, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1830754
Grant/Contract Number:  
SC0021189
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 14; Journal Issue: 20; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 2D materials; single nanoflake; photocurrent mapping; n-type MoS2; p-type MoS2

Citation Formats

Erdewyk, Michael Van, and Sambur, Justin B. Single Nanoflake Photoelectrochemistry Reveals Intrananoflake Doping Heterogeneity That Explains Ensemble-Level Photoelectrochemical Behavior. United States: N. p., 2021. Web. doi:10.1021/acsami.1c14928.
Erdewyk, Michael Van, & Sambur, Justin B. Single Nanoflake Photoelectrochemistry Reveals Intrananoflake Doping Heterogeneity That Explains Ensemble-Level Photoelectrochemical Behavior. United States. https://doi.org/10.1021/acsami.1c14928
Erdewyk, Michael Van, and Sambur, Justin B. Mon . "Single Nanoflake Photoelectrochemistry Reveals Intrananoflake Doping Heterogeneity That Explains Ensemble-Level Photoelectrochemical Behavior". United States. https://doi.org/10.1021/acsami.1c14928. https://www.osti.gov/servlets/purl/1830754.
@article{osti_1830754,
title = {Single Nanoflake Photoelectrochemistry Reveals Intrananoflake Doping Heterogeneity That Explains Ensemble-Level Photoelectrochemical Behavior},
author = {Erdewyk, Michael Van and Sambur, Justin B.},
abstractNote = {Transition metal dichalcogenide (TMD) nanoflake thin films are attractive electrode materials for photoelectrochemical (PEC) solar energy conversion and sensing applications, but their photocurrent quantum yields are generally lower than those of bulk TMD electrodes. The poor PEC performance has been primarily attributed to enhanced charge carrier recombination at exposed defect and edge sites introduced by the exfoliation process. In this work, a single nanoflake PEC approach reveals how an alternative effect, doping heterogeneity, limits ensemble-level PEC performance. Photocurrent mapping and local photocurrent–potential (i–E) measurements of MoS2 nanoflakes exfoliated from naturally occurring bulk crystals revealed the presence of n- and ptype domains within the same nanoflake. Interestingly, the n- and p-type domains in the natural MoS2 nanoflakes were equally efficient for iodide oxidation and tri-iodide reduction (IQE values exceed 80%). At the single domain-level, the natural MoS2 nanoflakes were nearly as efficient as nanoflakes exfoliated from synthetic n-type MoS2 crystals. Single domain-level i–E measurements explain why natural MoS2 nanoflakes exhibit an n-type to p-type photocurrent switching effect in ensemble-level measurements: the n- and p-type diode currents from individual domains oppose each other upon illuminating the entire nanoflake, resulting in zero photocurrent at the switching potential. The doping heterogeneity effect is likely due to nonideal stoichiometry, where p-type domains are S-rich according to XPS measurements. Although this doping heterogeneity effect limits photoanode or photocathode performance, these findings open the possibility to synthesize efficient TMD nanoflake photocatalysts with well-defined lateral p- and n-type domains for enhanced charge separation.},
doi = {10.1021/acsami.1c14928},
journal = {ACS Applied Materials and Interfaces},
number = 20,
volume = 14,
place = {United States},
year = {Mon Nov 01 00:00:00 EDT 2021},
month = {Mon Nov 01 00:00:00 EDT 2021}
}

Works referenced in this record:

Single-Nanoflake Photo-Electrochemistry Reveals Champion and Spectator Flakes in Exfoliated MoSe 2 Films
journal, March 2018

  • Todt, Michael A.; Isenberg, Allan E.; Nanayakkara, Sanjini U.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 12
  • DOI: 10.1021/acs.jpcc.7b12715

Efficiency losses from carrier‐type inhomogeneity in tungsten diselenide photoelectrodes
journal, June 1981

  • Menezes, S.; Schneemeyer, L. F.; Lewerenz, H. J.
  • Applied Physics Letters, Vol. 38, Issue 11
  • DOI: 10.1063/1.92193

Origin of n -type conductivity of monolayer MoS 2
journal, March 2019


MoS2 impurities: Chemical identification and spatial resolution of bismuth impurities in geological material
journal, April 2020


Removing Defects in WSe 2 via Surface Oxidation and Etching to Improve Solar Conversion Performance
journal, December 2018


Semiconducting Properties of Single Crystals of n ‐ and p ‐Type Tungsten Diselenide (WSe 2 )
journal, September 1968

  • Upadhyayula, L. C.; Loferski, J. J.; Wold, A.
  • Journal of Applied Physics, Vol. 39, Issue 10
  • DOI: 10.1063/1.1655829

Performance of Synthetical n-MoSe[sub 2] in Electrochemical Solar Cells
journal, January 1978

  • Gobrecht, J.
  • Journal of The Electrochemical Society, Vol. 125, Issue 12
  • DOI: 10.1149/1.2131370

The Role of Surface Orientation in the Photoelectrochemical Behavior of Layer Type d-Band Semiconductors
journal, October 1979

  • Kautek, W.; Gerischer, H.; Tributsch, H.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 83, Issue 10
  • DOI: 10.1002/bbpc.19790831010

Impact of intrinsic atomic defects on the electronic structure of MoS 2 monolayers
journal, August 2014


Electrochemical Solar Cell Based on the d-Band Semiconductor Tungsten-Diselenide
journal, December 1978

  • Gobrecht, J.; Gerischer, H.; Tributsch, H.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 82, Issue 12
  • DOI: 10.1002/bbpc.19780821212

Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces
journal, August 2015


Passivation of recombination centers in n ‐WSe 2 yields high efficiency (>14%) photoelectrochemical cell
journal, October 1985

  • Tenne, R.; Wold, A.
  • Applied Physics Letters, Vol. 47, Issue 7
  • DOI: 10.1063/1.96066

Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes
journal, March 1980

  • Lewerenz, H. J.; Heller, A.; DiSalvo, F. J.
  • Journal of the American Chemical Society, Vol. 102, Issue 6
  • DOI: 10.1021/ja00526a019

Evaluation and reduction of efficiency losses at tungsten diselenide photoanodes
journal, January 1980

  • Parkinson, Bruce A.; Furtak, Thomas E.; Canfield, Duane
  • Faraday Discussions of the Chemical Society, Vol. 70
  • DOI: 10.1039/dc9807000233

Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping
journal, April 2014


Improvement of energy conversion efficiency by specific chemical treatments of molybdenum selenide (n-MoSe2) and tungsten selenide (n-WSe2) photoanodes
journal, March 1981

  • Canfield, D.; Parkinson, B. A.
  • Journal of the American Chemical Society, Vol. 103, Issue 5
  • DOI: 10.1021/ja00395a076

van der Waals Layered Materials: Opportunities and Challenges
journal, October 2016


Semiconductor Electrodes
journal, January 1981

  • Fan, Fu-Ren F.
  • Journal of The Electrochemical Society, Vol. 128, Issue 5
  • DOI: 10.1149/1.2127580

Structural Features Dictate the Photoelectrochemical Activities of Two-Dimensional MoSe 2 and WSe 2 Nanostructures
journal, March 2021

  • Tóth, Péter S.; Szabó, Gábor; Janáky, Csaba
  • The Journal of Physical Chemistry C, Vol. 125, Issue 14
  • DOI: 10.1021/acs.jpcc.1c01265

Locally Engineering and Interrogating the Photoelectrochemical Behavior of Defects in Transition Metal Dichalcogenides
journal, July 2020

  • Hill, Joshua W.; Fu, Zhuangen; Tian, Jifa
  • The Journal of Physical Chemistry C, Vol. 124, Issue 31
  • DOI: 10.1021/acs.jpcc.0c05235

Directly visualizing carrier transport and recombination at individual defects within 2D semiconductors
journal, January 2021

  • Hill, Joshua W.; Hill, Caleb M.
  • Chemical Science, Vol. 12, Issue 14
  • DOI: 10.1039/D0SC07033E

Ambipolar MoS 2 Thin Flake Transistors
journal, February 2012

  • Zhang, Yijin; Ye, Jianting; Matsuhashi, Yusuke
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl2021575

Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices
journal, February 2020


Efficient and stable photoelectrochemical cells constructed with WSe2 and MoSe2 photoanodes
journal, March 1981


Scanning light‐spot analysis of the carrier collection in liquid‐junction solar energy converters
journal, November 1980

  • Furtak, T. E.; Canfield, D. C.; Parkinson, B. A.
  • Journal of Applied Physics, Vol. 51, Issue 11
  • DOI: 10.1063/1.327524

Imaging the Anisotropic Reactivity of a Tungsten Diselenide Photocathode
journal, June 2015


Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production
journal, July 2015

  • Yu, Xiaoyun; Prévot, Mathieu S.; Guijarro, Néstor
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8596

Further studies of the photoelectrochemical properties of the group VI transition metal dichalcogenides
journal, March 1982


Native defects in bulk and monolayer MoS 2 from first principles
journal, March 2015


A scanning probe investigation of the role of surface motifs in the behavior of p-WSe 2 photocathodes
journal, January 2016

  • Velazquez, Jesus M.; John, Jimmy; Esposito, Daniel V.
  • Energy & Environmental Science, Vol. 9, Issue 1
  • DOI: 10.1039/C5EE02530C

Digital Imaging of the Effect of Photoetching on the Photoresponse of n-Type Tungsten Diselenide and Molybdenum Diselenide Single Crystal Electrodes
journal, January 1996

  • Salvador, P.; Chaparro, A. M.; Mir, A.
  • The Journal of Physical Chemistry, Vol. 100, Issue 2
  • DOI: 10.1021/jp952001x

Identification of rhenium donors and sulfur vacancy acceptors in layered MoS 2 bulk samples
journal, June 2016

  • Brandão, F. D.; Ribeiro, G. M.; Vaz, P. H.
  • Journal of Applied Physics, Vol. 119, Issue 23
  • DOI: 10.1063/1.4954017

Defect-Dominated Doping and Contact Resistance in MoS 2
journal, February 2014

  • McDonnell, Stephen; Addou, Rafik; Buie, Creighton
  • ACS Nano, Vol. 8, Issue 3
  • DOI: 10.1021/nn500044q

Photoelectrochemistry of WSe[sub 2] Electrodes
journal, January 1984

  • Lewerenz, H. J.
  • Journal of The Electrochemical Society, Vol. 131, Issue 1
  • DOI: 10.1149/1.2115467

Exfoliation of large-area transition metal chalcogenide single layers
journal, October 2015

  • Magda, Gábor Zsolt; Pető, János; Dobrik, Gergely
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14714

Hydrogen Evolution from Pt/Ru-Coated p-Type WSe 2 Photocathodes
journal, December 2012

  • McKone, James R.; Pieterick, Adam P.; Gray, Harry B.
  • Journal of the American Chemical Society, Vol. 135, Issue 1
  • DOI: 10.1021/ja308581g

Defect Mitigation of Solution-Processed 2D WSe 2 Nanoflakes for Solar-to-Hydrogen Conversion
journal, December 2017


Bridging the Gap Between Bulk and Nanostructured Photoelectrodes: The Impact of Surface States on the Electrocatalytic and Photoelectrochemical Properties of MoS 2
journal, May 2013

  • Chen, Zhebo; Forman, Arnold J.; Jaramillo, Thomas F.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 19
  • DOI: 10.1021/jp311375k

Unravelling the effect of sulfur vacancies on the electronic structure of the MoS 2 crystal
journal, January 2020

  • Zhang, Xixia; Wang, Shanpeng; Lee, Chao-Kuei
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 38
  • DOI: 10.1039/C9CP07004D

Semiconductor Electrodes: XLI . Improvement of Performance of Electrodes by Electrochemical Polymerization of o‐Phenylenediamine at Surface Imperfections
journal, February 1982

  • White, Henry S.; Abruna, Hector D.; Bard, Allen J.
  • Journal of The Electrochemical Society, Vol. 129, Issue 2
  • DOI: 10.1149/1.2123810

2D Nanomaterials for Photocatalytic Hydrogen Production
journal, June 2019


Improved photoactivity of melt-grown group VI transition metal dichalcogenides
journal, August 1988


Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides
journal, February 1982

  • Kam, K. K.; Parkinson, B. A.
  • The Journal of Physical Chemistry, Vol. 86, Issue 4
  • DOI: 10.1021/j100393a010

Progress of Large-Scale Synthesis and Electronic Device Application of Two-Dimensional Transition Metal Dichalcogenides
journal, July 2017


Photoelectrochemistry of Pristine Mono- and Few-Layer MoS 2
journal, February 2016


Electrochemically Probing Exciton Transport in Monolayers of Two-Dimensional Semiconductors
journal, January 2021


Semiconductor Electrodes
journal, January 1980

  • Fan, Fu-Ren F.
  • Journal of The Electrochemical Society, Vol. 127, Issue 2
  • DOI: 10.1149/1.2129700

Role of Photogenerated Iodine on the Energy-Conversion Properties of MoSe 2 Nanoflake Liquid Junction Photovoltaics
journal, July 2018

  • Isenberg, Allan E.; Todt, Michael A.; Wang, Li
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 33
  • DOI: 10.1021/acsami.8b07617

Stability and electronic structures of native defects in single-layer MoS 2
journal, May 2014


Directly Mapping Photoelectrochemical Behavior within Individual Transition Metal Dichalcogenide Nanosheets
journal, July 2019


Surface defects on n-MoSe2 electrodes used in photoelectrochemical solar cells
journal, December 1983


Mott‐Schottky Plots and Flatband Potentials for Single Crystal Rutile Electrodes
journal, September 1982

  • Cooper, G.; Turner, J. A.; Nozik, A. J.
  • Journal of The Electrochemical Society, Vol. 129, Issue 9
  • DOI: 10.1149/1.2124334

Dynamics of cleaning, passivating and doping monolayer MoS 2 by controlled laser irradiation
journal, August 2019


The current‐voltage characteristics of semiconductor‐electrolyte junction photovoltaic cells
journal, April 1980

  • Reichman, J.
  • Applied Physics Letters, Vol. 36, Issue 7
  • DOI: 10.1063/1.91551

Toward Wafer‐Scale Production of 2D Transition Metal Chalcogenides
journal, May 2021

  • Wang, Peijian; Yang, Deren; Pi, Xiaodong
  • Advanced Electronic Materials, Vol. 7, Issue 8
  • DOI: 10.1002/aelm.202100278

Efficient Ultrathin Liquid Junction Photovoltaics Based on Transition Metal Dichalcogenides
journal, March 2019


Giant Defect-Induced Effects on Nanoscale Charge Separation in Semiconductor Photocatalysts
journal, December 2018


Toward Large-Area Solar Energy Conversion with Semiconducting 2D Transition Metal Dichalcogenides
journal, June 2016


Roll-to-Roll Deposition of Semiconducting 2D Nanoflake Films of Transition Metal Dichalcogenides for Optoelectronic Applications
journal, November 2019

  • Wells, Rebekah A.; Johnson, Hannah; Lhermitte, Charles R.
  • ACS Applied Nano Materials, Vol. 2, Issue 12
  • DOI: 10.1021/acsanm.9b01774

Full Energy Spectra of Interface State Densities for n ‐ and p ‐type MoS 2 Field‐Effect Transistors
journal, September 2019

  • Fang, Nan; Toyoda, Satoshi; Taniguchi, Takashi
  • Advanced Functional Materials, Vol. 29, Issue 49
  • DOI: 10.1002/adfm.201904465

High‐Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transition‐Metal Dichalcogenide Nanosheets
journal, January 2020

  • Takahashi, Yasufumi; Kobayashi, Yu; Wang, Ziqian
  • Angewandte Chemie International Edition, Vol. 59, Issue 9
  • DOI: 10.1002/anie.201912863