DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Accelerating Hydrogen Absorption and Desorption Rates in Palladium Nanocubes with an Ultrathin Surface Modification

Abstract

Exploiting the high surface-area-to-volume ratio of nanomaterials to store energy in the form of electrochemical alloys is an exceptionally promising route for achieving high-rate energy storage and delivery. Nanoscale palladium hydride is an excellent model system for understanding how nanoscale-specific properties affect the absorption and desorption of energy carrying equivalents. Hydrogen absorption and desorption in shape-controlled Pd nanostructures does not occur uniformly across the entire nanoparticle surface. Instead, hydrogen absorption and desorption proceed selectively through high-activity sites at the corners and edges. Such a mechanism hinders the hydrogen absorption rates and greatly reduces the benefit of nanoscaling the dimensions of the palladium. To solve this, we modify the surface of palladium with an ultrathin platinum shell. This modification nearly removes the barrier for hydrogen absorption (89 kJ/mol without a Pt shell and 1.8 kJ/mol with a Pt shell) and enables diffusion through the entire Pd/Pt surface.

Authors:
 [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. Univ. of Colorado, Boulder, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1829812
Report Number(s):
NREL/JA-5900-80508
Journal ID: ISSN 1530-6984; DE-AC36-08GO28308
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 21; Journal Issue: 21; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 25 ENERGY STORAGE; electrochemistry; hydrogen storage; nanomaterials; palladium; palladium hydride; catalysis; energy storage

Citation Formats

Metzroth, Lucy T., Miller, Elisa M., Norman, Andrew G., Yazdi, Sadegh, and Carroll, Gerard Michael. Accelerating Hydrogen Absorption and Desorption Rates in Palladium Nanocubes with an Ultrathin Surface Modification. United States: N. p., 2021. Web. doi:10.1021/acs.nanolett.1c02903.
Metzroth, Lucy T., Miller, Elisa M., Norman, Andrew G., Yazdi, Sadegh, & Carroll, Gerard Michael. Accelerating Hydrogen Absorption and Desorption Rates in Palladium Nanocubes with an Ultrathin Surface Modification. United States. https://doi.org/10.1021/acs.nanolett.1c02903
Metzroth, Lucy T., Miller, Elisa M., Norman, Andrew G., Yazdi, Sadegh, and Carroll, Gerard Michael. Fri . "Accelerating Hydrogen Absorption and Desorption Rates in Palladium Nanocubes with an Ultrathin Surface Modification". United States. https://doi.org/10.1021/acs.nanolett.1c02903. https://www.osti.gov/servlets/purl/1829812.
@article{osti_1829812,
title = {Accelerating Hydrogen Absorption and Desorption Rates in Palladium Nanocubes with an Ultrathin Surface Modification},
author = {Metzroth, Lucy T. and Miller, Elisa M. and Norman, Andrew G. and Yazdi, Sadegh and Carroll, Gerard Michael},
abstractNote = {Exploiting the high surface-area-to-volume ratio of nanomaterials to store energy in the form of electrochemical alloys is an exceptionally promising route for achieving high-rate energy storage and delivery. Nanoscale palladium hydride is an excellent model system for understanding how nanoscale-specific properties affect the absorption and desorption of energy carrying equivalents. Hydrogen absorption and desorption in shape-controlled Pd nanostructures does not occur uniformly across the entire nanoparticle surface. Instead, hydrogen absorption and desorption proceed selectively through high-activity sites at the corners and edges. Such a mechanism hinders the hydrogen absorption rates and greatly reduces the benefit of nanoscaling the dimensions of the palladium. To solve this, we modify the surface of palladium with an ultrathin platinum shell. This modification nearly removes the barrier for hydrogen absorption (89 kJ/mol without a Pt shell and 1.8 kJ/mol with a Pt shell) and enables diffusion through the entire Pd/Pt surface.},
doi = {10.1021/acs.nanolett.1c02903},
journal = {Nano Letters},
number = 21,
volume = 21,
place = {United States},
year = {2021},
month = {10}
}

Works referenced in this record:

Facile Synthesis of Pd–Pt Alloy Nanocages and Their Enhanced Performance for Preferential Oxidation of CO in Excess Hydrogen
journal, September 2011

  • Zhang, Hui; Jin, Mingshang; Liu, Hongyang
  • ACS Nano, Vol. 5, Issue 10
  • DOI: 10.1021/nn202896q

Reconstructing solute-induced phase transformations within individual nanocrystals
journal, April 2016

  • Narayan, Tarun C.; Baldi, Andrea; Koh, Ai Leen
  • Nature Materials, Vol. 15, Issue 7
  • DOI: 10.1038/nmat4620

Overgrowth Versus Galvanic Replacement: Mechanistic Roles of Pd Seeds during the Deposition of Pd–Pt
journal, April 2018

  • Ataee-Esfahani, Hamed; Koczkur, Kallum M.; Weiner, Rebecca G.
  • ACS Omega, Vol. 3, Issue 4
  • DOI: 10.1021/acsomega.8b00394

Synthesis of Stable Shape-Controlled Catalytically Active β-Palladium Hydride
journal, December 2015

  • Zhao, Zipeng; Huang, Xiaoqing; Li, Mufan
  • Journal of the American Chemical Society, Vol. 137, Issue 50
  • DOI: 10.1021/jacs.5b11543

Comparison of Hydrogen Electroadsorption from the Electrolyte with Hydrogen Adsorption from the Gas Phase
journal, January 1996

  • Jerkiewicz, Gregory
  • Journal of The Electrochemical Society, Vol. 143, Issue 4
  • DOI: 10.1149/1.1836623

Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles
journal, December 2015

  • Ulvestad, A.; Welland, M. J.; Collins, S. S. E.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10092

Hysteresis-Free Nanoplasmonic Pd–Au Alloy Hydrogen Sensors
journal, April 2015


Hydrogen storage in Pd nanocrystals covered with a metal–organic framework
journal, July 2014

  • Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.
  • Nature Materials, Vol. 13, Issue 8
  • DOI: 10.1038/nmat4030

Palladium Nanoparticles in Polyols: Synthesis, Catalytic Couplings, and Hydrogenations
journal, August 2019


High-Performance Nanostructured Palladium-Based Hydrogen Sensors—Current Limitations and Strategies for Their Mitigation
journal, November 2020


Acceleration of hydrogen absorption by palladium through surface alloying with gold
journal, July 2018

  • Namba, Kazuhiro; Ogura, Shohei; Ohno, Satoshi
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 31
  • DOI: 10.1073/pnas.1800412115

A hydrogen adsorption and absorption study with ultrathin Pd overlayers on Au(111) and Au(100)
journal, October 1993


Thermodynamics of hydrogen dissolved in palladium/rhodium and palladium/platinum alloys
journal, January 1977

  • Clewley, J. D.; Lynch, J. F.; Flanagan, T. B.
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 73, Issue 0
  • DOI: 10.1039/f19777300494

Hydrogen gas sensing performance of Pd–Ni alloy thin films
journal, November 2010


The Palladium-Hydrogen System
journal, August 1991


Efficient Electrocatalytic Hydrogenation with a Palladium Membrane Reactor
journal, April 2019

  • Sherbo, Rebecca S.; Kurimoto, Aiko; Brown, Christopher M.
  • Journal of the American Chemical Society, Vol. 141, Issue 19
  • DOI: 10.1021/jacs.9b01442

Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation
journal, October 2010


Visualizing Facet-Dependent Hydrogenation Dynamics in Individual Palladium Nanoparticles
journal, August 2018


Hydrogen adsorption on palladium and palladium hydride at 1bar
journal, April 2010


Engineering Palladium Surfaces to Enhance the Electrochemical Storage of Hydrogen
journal, January 2017

  • Hamm, S. C.; Dmitriyeva, O.; Knies, D. L.
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0231714jes

Correlations in palladium membranes for hydrogen separation: A review
journal, June 2011


Novel insight into the hydrogen absorption mechanism at the Pd(110) surface
journal, April 2014

  • Ohno, Satoshi; Wilde, Markus; Fukutani, Katsuyuki
  • The Journal of Chemical Physics, Vol. 140, Issue 13
  • DOI: 10.1063/1.4869544

Author Correction: Electronic origin of hydrogen storage in MOF-covered palladium nanocubes investigated by synchrotron X-rays
journal, October 2018


Impact of Surfactants and Stabilizers on Palladium Nanoparticle–Hydrogen Interaction Kinetics: Implications for Hydrogen Sensors
journal, March 2020

  • Stolaś, Alicja; Darmadi, Iwan; Nugroho, Ferry Anggoro Ardy
  • ACS Applied Nano Materials, Vol. 3, Issue 3
  • DOI: 10.1021/acsanm.0c00020

Size-Dependent Kinetics of Hydriding and Dehydriding of Pd Nanoparticles
journal, March 2010


Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review
journal, February 2018


Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals
journal, August 2013

  • Bardhan, Rizia; Hedges, Lester O.; Pint, Cary L.
  • Nature Materials, Vol. 12, Issue 10
  • DOI: 10.1038/nmat3716

Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape
journal, September 2015

  • Syrenova, Svetlana; Wadell, Carl; Nugroho, Ferry A. A.
  • Nature Materials, Vol. 14, Issue 12
  • DOI: 10.1038/nmat4409

Path and mechanism of hydrogen absorption at Pd(100)
journal, April 1998


Facets and vertices regulate hydrogen uptake and release in palladium nanocrystals
journal, March 2019


The impact of surface composition on Tafel kinetics leading to enhanced electrochemical insertion of hydrogen in palladium
journal, May 2018


Effects of Pt shell thickness on self-assembly monolayer Pd@Pt core-shell nanocrystals based hydrogen sensing
journal, September 2016

  • Uddin, A. S. M. Iftekhar; Yaqoob, Usman; Hassan, Kamrul
  • International Journal of Hydrogen Energy, Vol. 41, Issue 34
  • DOI: 10.1016/j.ijhydene.2016.06.138

Thermodynamic Properties for Solution of Hydrogen in Palladium-Based Binary Alloys
journal, June 1995

  • Sakamoto, Y.; Chen, F. L.; Ura, M.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 99, Issue 6, p. 807-820
  • DOI: 10.1002/bbpc.19950990605

Electrochemical behavior of Pd–Pt–Au alloys
journal, January 2010


Hydrogen in Palladium and Storage Properties of Related Nanomaterials: Size, Shape, Alloying, and Metal‐Organic Framework Coating Effects
journal, March 2019

  • Dekura, Shun; Kobayashi, Hirokazu; Kusada, Kohei
  • ChemPhysChem, Vol. 20, Issue 10
  • DOI: 10.1002/cphc.201900109

Diffusion coefficient of hydrogen in α-phase palladium and palladium–platinum alloy
journal, January 2001

  • Zoltowski, Piotr; Makowska, Ewa
  • Physical Chemistry Chemical Physics, Vol. 3, Issue 14
  • DOI: 10.1039/b102114l

Nanoantenna-enhanced gas sensing in a single tailored nanofocus
journal, May 2011

  • Liu, Na; Tang, Ming L.; Hentschel, Mario
  • Nature Materials, Vol. 10, Issue 8
  • DOI: 10.1038/nmat3029

Size dependence of the lattice parameter of small palladium particles
journal, April 1995


The Roles of Subsurface Carbon and Hydrogen in Palladium-Catalyzed Alkyne Hydrogenation
journal, April 2008


Electrochemical Behavior of Unsupported Shaped Palladium Nanoparticles
journal, July 2014

  • Zalineeva, Anna; Baranton, Stève; Coutanceau, Christophe
  • Langmuir, Vol. 31, Issue 5
  • DOI: 10.1021/la5025229

Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles
journal, January 2017

  • Narayan, Tarun C.; Hayee, Fariah; Baldi, Andrea
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14020

Surface and Subsurface Hydrogen:  Adsorption Properties on Transition Metals and Near-Surface Alloys
journal, March 2005

  • Greeley, Jeff; Mavrikakis, Manos
  • The Journal of Physical Chemistry B, Vol. 109, Issue 8
  • DOI: 10.1021/jp046540q

Pd-Containing Nanostructures for Electrochemical CO 2 Reduction Reaction
journal, January 2018


Effect of structural defects on the hydriding kinetics of nanocrystalline Pd thin films
journal, June 2015

  • Delmelle, Renaud; Amin-Ahmadi, Behnam; Sinnaeve, Marc
  • International Journal of Hydrogen Energy, Vol. 40, Issue 23
  • DOI: 10.1016/j.ijhydene.2015.04.017

Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen
journal, February 2017

  • Zalineeva, Anna; Baranton, Stève; Coutanceau, Christophe
  • Science Advances, Vol. 3, Issue 2
  • DOI: 10.1126/sciadv.1600542

Synthesis of Pd−Pt Bimetallic Nanocrystals with a Concave Structure through a Bromide-Induced Galvanic Replacement Reaction
journal, April 2011

  • Zhang, Hui; Jin, Mingshang; Wang, Jinguo
  • Journal of the American Chemical Society, Vol. 133, Issue 15
  • DOI: 10.1021/ja201156s

Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles
journal, November 2015

  • Griessen, Ronald; Strohfeldt, Nikolai; Giessen, Harald
  • Nature Materials, Vol. 15, Issue 3
  • DOI: 10.1038/nmat4480

Subsurface Hydrogen Diffusion into Pd Nanoparticles: Role of Low-Coordinated Surface Sites and Facilitation by Carbon
journal, January 2012

  • Ludwig, Wiebke; Savara, Aditya; Madix, Robert J.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 5
  • DOI: 10.1021/jp209033s

Electrochemical absorption and oxidation of hydrogen on palladium alloys with platinum, gold and rhodium
journal, January 2010

  • Łukaszewski, Mariusz; Hubkowska, Katarzyna; Czerwiński, Andrzej
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 43
  • DOI: 10.1039/c0cp00542h

In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals
journal, September 2014

  • Baldi, Andrea; Narayan, Tarun C.; Koh, Ai Leen
  • Nature Materials, Vol. 13, Issue 12
  • DOI: 10.1038/nmat4086