DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding Solid Electrolyte Interphase Nucleation and Growth on Lithium Metal Surfaces

Abstract

Experiments and theory are needed to decode the exact structure and distribution of components of a passivation layer formed at the anode surface of Li metal batteries, known as the Solid Electrolyte Interphase (SEI). Due to the inherent dynamic behavior as well as the lithium reactivity, the SEI structure and its growth mechanisms are still unclear. This study uses molecular simulation and computational chemistry tools to investigate the initial nucleation and growth dynamics of LiOH and Li2O that provide us with thermodynamics and structural information about the nucleating clusters of each species. Following the most favorable pathways for the addition of each of the components to a given nascent SEI cluster reveals their preferential nucleation mechanisms and illustrates different degrees of crystallinity and electron density distribution that are useful to understand ionic transport through SEI blocks.

Authors:
ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Texas A & M Univ., College Station, TX (United States). Texas A & M Engineering Experiment Station
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Contributing Org.:
Texas A&M High Performance Research Computing
OSTI Identifier:
1828817
Alternate Identifier(s):
OSTI ID: 1838687
Grant/Contract Number:  
EE-0008210; EE0008210
Resource Type:
Published Article
Journal Name:
Batteries
Additional Journal Information:
Journal Name: Batteries Journal Volume: 7 Journal Issue: 4; Journal ID: ISSN 2313-0105
Publisher:
MDPI AG
Country of Publication:
Switzerland
Language:
English
Subject:
25 ENERGY STORAGE; density functional theory; ab initio molecular dynamics; solid-electrolyte interface; molecular electrostatic potential; passivation layer; nucleation and growth

Citation Formats

Angarita-Gomez, Stefany, and Balbuena, Perla B. Understanding Solid Electrolyte Interphase Nucleation and Growth on Lithium Metal Surfaces. Switzerland: N. p., 2021. Web. doi:10.3390/batteries7040073.
Angarita-Gomez, Stefany, & Balbuena, Perla B. Understanding Solid Electrolyte Interphase Nucleation and Growth on Lithium Metal Surfaces. Switzerland. https://doi.org/10.3390/batteries7040073
Angarita-Gomez, Stefany, and Balbuena, Perla B. Tue . "Understanding Solid Electrolyte Interphase Nucleation and Growth on Lithium Metal Surfaces". Switzerland. https://doi.org/10.3390/batteries7040073.
@article{osti_1828817,
title = {Understanding Solid Electrolyte Interphase Nucleation and Growth on Lithium Metal Surfaces},
author = {Angarita-Gomez, Stefany and Balbuena, Perla B.},
abstractNote = {Experiments and theory are needed to decode the exact structure and distribution of components of a passivation layer formed at the anode surface of Li metal batteries, known as the Solid Electrolyte Interphase (SEI). Due to the inherent dynamic behavior as well as the lithium reactivity, the SEI structure and its growth mechanisms are still unclear. This study uses molecular simulation and computational chemistry tools to investigate the initial nucleation and growth dynamics of LiOH and Li2O that provide us with thermodynamics and structural information about the nucleating clusters of each species. Following the most favorable pathways for the addition of each of the components to a given nascent SEI cluster reveals their preferential nucleation mechanisms and illustrates different degrees of crystallinity and electron density distribution that are useful to understand ionic transport through SEI blocks.},
doi = {10.3390/batteries7040073},
journal = {Batteries},
number = 4,
volume = 7,
place = {Switzerland},
year = {2021},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.3390/batteries7040073

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy
journal, October 2018


Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Pathways for practical high-energy long-cycling lithium metal batteries
journal, February 2019


Projector augmented-wave method
journal, December 1994


Electrolytes for Rechargeable Lithium–Air Batteries
journal, February 2020

  • Lai, Jingning; Xing, Yi; Chen, Nan
  • Angewandte Chemie International Edition, Vol. 59, Issue 8
  • DOI: 10.1002/anie.201903459

A review of the electrochemical performance of alloy anodes for lithium-ion batteries
journal, January 2011


Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries
journal, January 2000

  • Aurbach, D.; Zinigrad, E.; Teller, H.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393349

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Effects of Solid Electrolyte Interphase Components on the Reduction of LiFSI over Lithium Metal
journal, May 2020

  • Kamphaus, Ethan P.; Gomez, Stefany Angarita; Qin, Xueping
  • ChemPhysChem, Vol. 21, Issue 12
  • DOI: 10.1002/cphc.202000174

Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal
journal, May 2020

  • Hope, Michael A.; Rinkel, Bernardine L. D.; Gunnarsdóttir, Anna B.
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-020-16114-x

Polysulfide reduction and Li2S phase formation in the presence of lithium metal and solid electrolyte interphase layer
journal, February 2021


Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes
journal, October 2020

  • Liu, Wei; Liu, Pengcheng; Mitlin, David
  • Advanced Energy Materials, Vol. 10, Issue 43
  • DOI: 10.1002/aenm.202002297

How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes
journal, December 2017

  • Suo, Liumin; Oh, Dahyun; Lin, Yuxiao
  • Journal of the American Chemical Society, Vol. 139, Issue 51
  • DOI: 10.1021/jacs.7b10688

Materials chemistry among the artificial solid electrolyte interphases of metallic lithium anodes
journal, January 2021

  • Jiang, Chi; Ma, Cong; Yang, Fan
  • Materials Chemistry Frontiers, Vol. 5, Issue 14
  • DOI: 10.1039/D1QM00352F

A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase
journal, March 2021


Insights into lithium ion deposition on lithium metal surfaces
journal, January 2020

  • Angarita-Gomez, Stefany; Balbuena, Perla B.
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 37
  • DOI: 10.1039/D0CP03399E

Solid–Electrolyte Interphase Formation and Electrolyte Reduction at Li-Ion Battery Graphite Anodes: Insights from First-Principles Molecular Dynamics
journal, November 2012

  • Ganesh, P.; Kent, P. R. C.; Jiang, De-en
  • The Journal of Physical Chemistry C, Vol. 116, Issue 46
  • DOI: 10.1021/jp3086304

In-Depth Characterization of Lithium-Metal Surfaces with XPS and ToF-SIMS: Toward Better Understanding of the Passivation Layer
journal, January 2021


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Pressure-induced antifluorite-to-anticotunnite phase transition in lithium oxide
journal, May 2006


DFT modelling of explicit solid–solid interfaces in batteries: methods and challenges
journal, January 2020

  • Leung, Kevin
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 19
  • DOI: 10.1039/C9CP06485K

Quantum Mechanical Continuum Solvation Models
journal, August 2005

  • Tomasi, Jacopo; Mennucci, Benedetta; Cammi, Roberto
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr9904009

A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

Transition of lithium growth mechanisms in liquid electrolytes
journal, January 2016

  • Bai, Peng; Li, Ju; Brushett, Fikile R.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01674J

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Stable Lithium Electrodeposition at Ultra-High Current Densities Enabled by 3D PMF/Li Composite Anode
journal, February 2018

  • Fan, Lei; Zhuang, Houlong L.; Zhang, Weidong
  • Advanced Energy Materials, Vol. 8, Issue 15
  • DOI: 10.1002/aenm.201703360

Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives
journal, January 2019


A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Toward safe and rapid battery charging: Design optimal fast charging strategies thorough a physics‐based model considering lithium plating
journal, September 2020

  • Liu, Changhong; Gao, Yang; Liu, Lin
  • International Journal of Energy Research, Vol. 45, Issue 2
  • DOI: 10.1002/er.5924

Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating
journal, December 2014

  • Ryou, Myung-Hyun; Lee, Yong Min; Lee, Yunju
  • Advanced Functional Materials, Vol. 25, Issue 6
  • DOI: 10.1002/adfm.201402953

Lithium Metal Interface Modification for High‐Energy Batteries: Approaches and Characterization
journal, April 2020


Key Issues Hindering a Practical Lithium-Metal Anode
journal, May 2019


Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries
journal, November 2015

  • Camacho-Forero, Luis E.; Smith, Taylor W.; Bertolini, Samuel
  • The Journal of Physical Chemistry C, Vol. 119, Issue 48
  • DOI: 10.1021/acs.jpcc.5b08254

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes
journal, January 2021


Revealing the Impact of Film-Forming Electrolyte Additives on Lithium Metal Batteries via Solid-State NMR/MRI Analysis
journal, January 2021

  • Hsieh, Yi-Chen; Thienenkamp, Johannes Helmut; Huang, Chen-Jui
  • The Journal of Physical Chemistry C, Vol. 125, Issue 1
  • DOI: 10.1021/acs.jpcc.0c09771

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Reduction Mechanisms of Ethylene Carbonate on Si Anodes of Lithium-Ion Batteries: Effects of Degree of Lithiation and Nature of Exposed Surface
journal, November 2013

  • Martinez de la Hoz, Julibeth M.; Leung, Kevin; Balbuena, Perla B.
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 24
  • DOI: 10.1021/am404365r

Numerical simulation of the factors affecting the growth of lithium dendrites
journal, December 2019


Recent progress in fluorinated electrolytes for improving the performance of Li–S batteries
journal, February 2020


Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
journal, January 1997

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837858

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Role of Inorganic Surface Layer on Solid Electrolyte Interphase Evolution at Li-Metal Anodes
journal, August 2019

  • Kamphaus, Ethan P.; Angarita-Gomez, Stefany; Qin, Xueping
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 34
  • DOI: 10.1021/acsami.9b07587

Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries
journal, November 2019


Unravelling the Mechanism of Lithium Nucleation and Growth and the Interaction with the Solid Electrolyte Interface
journal, April 2021


The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “ Water-in-Salt ” electrolytes
journal, January 2018

  • Dubouis, Nicolas; Lemaire, Pierre; Mirvaux, Boris
  • Energy & Environmental Science, Vol. 11, Issue 12
  • DOI: 10.1039/C8EE02456A

Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes
journal, December 2011

  • Etacheri, Vinodkumar; Haik, Ortal; Goffer, Yossi
  • Langmuir, Vol. 28, Issue 1
  • DOI: 10.1021/la203712s

Model systems for screening and investigation of lithium metal electrode chemistry and dendrite formation
journal, January 2020

  • Kamphaus, Ethan P.; Hight, Karoline; Dermott, Micah
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 2
  • DOI: 10.1039/C9CP06020K

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Reactivity and Evolution of Ionic Phases in the Lithium Solid–Electrolyte Interphase
journal, February 2021


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Nucleation and Early Stage Growth of Li Electrodeposits
journal, September 2019


Gaussian-based computations in molecular science
journal, February 2004


Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Fluorine and Lithium: Ideal Partners for High‐Performance Rechargeable Battery Electrolytes
journal, November 2019

  • Aspern, N.; Röschenthaler, G. ‐V.; Winter, M.
  • Angewandte Chemie International Edition, Vol. 58, Issue 45
  • DOI: 10.1002/anie.201901381

An Electrochemical Study of the Reactivity at the Lithium Electrolyte/Bare Lithium Metal Interface
journal, January 1992

  • Odziemkowski, M.
  • Journal of The Electrochemical Society, Vol. 139, Issue 11
  • DOI: 10.1149/1.2069033

Canonical dynamics: Equilibrium phase-space distributions
journal, March 1985


Lithium hydroxide, LiOH, at elevated densities
journal, July 2014

  • Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald
  • The Journal of Chemical Physics, Vol. 141, Issue 2
  • DOI: 10.1063/1.4886335

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities
journal, July 1998

  • Curtiss, Larry A.; Redfern, Paul C.; Raghavachari, Krishnan
  • The Journal of Chemical Physics, Vol. 109, Issue 1
  • DOI: 10.1063/1.476538

A New Perspective on the Formation and Structure of the Solid Electrolyte Interface at the Graphite Anode of Li-Ion Cells
journal, January 1999

  • Ein-Eli, Yair
  • Electrochemical and Solid-State Letters, Vol. 2, Issue 5
  • DOI: 10.1149/1.1390787

Electrolyte interface design for regulating Li dendrite growth in rechargeable Li-metal batteries: A theoretical study
journal, June 2021


GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface: GEPOL
journal, October 1994

  • Pascual-ahuir, J. L.; Silla, E.; Tuñon, I.
  • Journal of Computational Chemistry, Vol. 15, Issue 10
  • DOI: 10.1002/jcc.540151009

Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes

A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate
journal, January 2013

  • Jung, Hyun Min; Park, Seong-Hyo; Jeon, Jongho
  • Journal of Materials Chemistry A, Vol. 1, Issue 38
  • DOI: 10.1039/c3ta12580g

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362