DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Highly Perfluorinated Covalent Triazine Frameworks Derived from a Low-Temperature Ionothermal Approach Towards Enhanced CO2 Electroreduction

Abstract

Perfluorinated covalent triazine frameworks (F-CTFs) have shown unique features and attractive performance in separation and catalysis. However, state-of-the-art F-CTFs synthesized via the ZnCl2-promoted procedure have quite low fluorine contents due to C-F bond cleavage induced by chloride (a Lewis base) and the harsh conditions deployed (400–700 °C). Fabricating F-CTFs with high fluorine contents (>30 wt %) remains challenging. Herein, we present a low-temperature ionothermal approach (275 °C) to prepare F-CTFs, which is achieved via polymerization of tetrafluoroterephthalonitrile (TFPN) over the Lewis superacids, e.g., zinc triflimide [Zn(NTf2)2] without side reactions. With low catalyst loading (equimolar), F-CTFs are afforded with high fluorine content (31 wt %), surface area up to 367 m2 g-1, and micropores around 1.1nm. The highly hydrophobic F-CTF-1 exhibits good capability to boost electroreduction of CO2 to CO, with faradaic efficiency of 95.7 % at -0.8 V and high current density (-141 mA cm-2) surpassing most of the metal-free electrocatalysts.

Authors:
 [1];  [2]; ORCiD logo [3];  [1]; ORCiD logo [3]; ORCiD logo [3];  [4];  [1]; ORCiD logo [1];  [2]; ORCiD logo [5]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Chinese Academy of Sciences (CAS), Beijing (China)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Ames Lab., and Iowa State Univ., Ames, IA (United States)
  5. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1827100
Alternate Identifier(s):
OSTI ID: 1844851
Report Number(s):
IS-J-10,605
Journal ID: ISSN 1433-7851
Grant/Contract Number:  
AC02-07CH11358; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 60; Journal Issue: 49; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; fluorinated; covalent triazine framework; Lewis superacid; ionothermal procedure; CO2 electroreduction

Citation Formats

Suo, Xian, Zhang, Fengtao, Yang, Zhenzhen, Chen, Hao, Wang, Tao, Wang, Zongyu, Kobayashi, Takeshi, Do-Thanh, Chi-Linh, Maltsev, Dmitry, Liu, Zhimin, and Dai, Sheng. Highly Perfluorinated Covalent Triazine Frameworks Derived from a Low-Temperature Ionothermal Approach Towards Enhanced CO2 Electroreduction. United States: N. p., 2021. Web. doi:10.1002/anie.202109342.
Suo, Xian, Zhang, Fengtao, Yang, Zhenzhen, Chen, Hao, Wang, Tao, Wang, Zongyu, Kobayashi, Takeshi, Do-Thanh, Chi-Linh, Maltsev, Dmitry, Liu, Zhimin, & Dai, Sheng. Highly Perfluorinated Covalent Triazine Frameworks Derived from a Low-Temperature Ionothermal Approach Towards Enhanced CO2 Electroreduction. United States. https://doi.org/10.1002/anie.202109342
Suo, Xian, Zhang, Fengtao, Yang, Zhenzhen, Chen, Hao, Wang, Tao, Wang, Zongyu, Kobayashi, Takeshi, Do-Thanh, Chi-Linh, Maltsev, Dmitry, Liu, Zhimin, and Dai, Sheng. Tue . "Highly Perfluorinated Covalent Triazine Frameworks Derived from a Low-Temperature Ionothermal Approach Towards Enhanced CO2 Electroreduction". United States. https://doi.org/10.1002/anie.202109342. https://www.osti.gov/servlets/purl/1827100.
@article{osti_1827100,
title = {Highly Perfluorinated Covalent Triazine Frameworks Derived from a Low-Temperature Ionothermal Approach Towards Enhanced CO2 Electroreduction},
author = {Suo, Xian and Zhang, Fengtao and Yang, Zhenzhen and Chen, Hao and Wang, Tao and Wang, Zongyu and Kobayashi, Takeshi and Do-Thanh, Chi-Linh and Maltsev, Dmitry and Liu, Zhimin and Dai, Sheng},
abstractNote = {Perfluorinated covalent triazine frameworks (F-CTFs) have shown unique features and attractive performance in separation and catalysis. However, state-of-the-art F-CTFs synthesized via the ZnCl2-promoted procedure have quite low fluorine contents due to C-F bond cleavage induced by chloride (a Lewis base) and the harsh conditions deployed (400–700 °C). Fabricating F-CTFs with high fluorine contents (>30 wt %) remains challenging. Herein, we present a low-temperature ionothermal approach (275 °C) to prepare F-CTFs, which is achieved via polymerization of tetrafluoroterephthalonitrile (TFPN) over the Lewis superacids, e.g., zinc triflimide [Zn(NTf2)2] without side reactions. With low catalyst loading (equimolar), F-CTFs are afforded with high fluorine content (31 wt %), surface area up to 367 m2 g-1, and micropores around 1.1nm. The highly hydrophobic F-CTF-1 exhibits good capability to boost electroreduction of CO2 to CO, with faradaic efficiency of 95.7 % at -0.8 V and high current density (-141 mA cm-2) surpassing most of the metal-free electrocatalysts.},
doi = {10.1002/anie.202109342},
journal = {Angewandte Chemie (International Edition)},
number = 49,
volume = 60,
place = {United States},
year = {Tue Sep 28 00:00:00 EDT 2021},
month = {Tue Sep 28 00:00:00 EDT 2021}
}

Works referenced in this record:

Influence of fluorination on CO 2 adsorption in materials derived from fluorinated covalent triazine framework precursors
journal, January 2019

  • Yang, Zhenzhen; Wang, Song; Zhang, Zihao
  • Journal of Materials Chemistry A, Vol. 7, Issue 29
  • DOI: 10.1039/C9TA02573A

Nanostrukturierte Materialien für die elektrokatalytische CO 2 -Reduktion und ihre Reaktionsmechanismen
journal, July 2017


Corrected Horváth-Kawazoe equations for pore-size distribution
journal, April 2000


Perfluorinated Covalent Triazine Framework Derived Hybrids for the Highly Selective Electroconversion of Carbon Dioxide into Methane
journal, October 2018

  • Wang, Yuanshuang; Chen, Junxiang; Wang, Genxiang
  • Angewandte Chemie International Edition, Vol. 57, Issue 40
  • DOI: 10.1002/anie.201807173

Transformation Strategy for Highly Crystalline Covalent Triazine Frameworks: From Staggered AB to Eclipsed AA Stacking
journal, March 2020

  • Yang, Zhenzhen; Chen, Hao; Wang, Song
  • Journal of the American Chemical Society, Vol. 142, Issue 15
  • DOI: 10.1021/jacs.0c00365

Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium-Sulfur Batteries
journal, January 2016

  • Talapaneni, Siddulu Naidu; Hwang, Tae Hoon; Je, Sang Hyun
  • Angewandte Chemie, Vol. 128, Issue 9
  • DOI: 10.1002/ange.201511553

Mechanochemical Friedel-Crafts Alkylation-A Sustainable Pathway Towards Porous Organic Polymers
journal, May 2017

  • Troschke, Erik; Grätz, Sven; Lübken, Tilo
  • Angewandte Chemie, Vol. 129, Issue 24
  • DOI: 10.1002/ange.201702303

Covalent triazine frameworks: synthesis and applications
journal, January 2019

  • Liu, Manying; Guo, Liping; Jin, Shangbin
  • Journal of Materials Chemistry A, Vol. 7, Issue 10
  • DOI: 10.1039/C8TA12442F

Computer fitting of Voigt profiles to Raman lines
journal, November 1973


Covalent Triazine Frameworks as Heterogeneous Catalysts for the Synthesis of Cyclic and Linear Carbonates from Carbon Dioxide and Epoxides
journal, August 2012

  • Roeser, Jérôme; Kailasam, Kamalakannan; Thomas, Arne
  • ChemSusChem, Vol. 5, Issue 9
  • DOI: 10.1002/cssc.201200091

Zn(II)-Catalyzed Synthesis of Piperidines from Propargyl Amines and Cyclopropanes
journal, August 2009

  • Lebold, Terry P.; Leduc, Andrew B.; Kerr, Michael A.
  • Organic Letters, Vol. 11, Issue 16
  • DOI: 10.1021/ol901435k

New Layered Triazine Framework/Exfoliated 2D Polymer with Superior Sodium-Storage Properties
journal, January 2018


Covalent triazine frameworks for carbon dioxide capture
journal, January 2019

  • Wang, Han; Jiang, Danni; Huang, Danlian
  • Journal of Materials Chemistry A, Vol. 7, Issue 40
  • DOI: 10.1039/C9TA06847C

Charged Covalent Triazine Frameworks for CO 2 Capture and Conversion
journal, February 2017

  • Buyukcakir, Onur; Je, Sang Hyun; Talapaneni, Siddulu Naidu
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 8
  • DOI: 10.1021/acsami.6b16769

Metal-Free Fluorine-Doped Carbon Electrocatalyst for CO 2 Reduction Outcompeting Hydrogen Evolution
journal, April 2018


Lithium‐Salt Mediated Synthesis of a Covalent Triazine Framework for Highly Stable Lithium Metal Batteries
journal, November 2019

  • Zhou, Tianhong; Zhao, Yan; Choi, Jang Wook
  • Angewandte Chemie International Edition, Vol. 58, Issue 47
  • DOI: 10.1002/anie.201908513

Mechanochemical Friedel-Crafts Alkylation-A Sustainable Pathway Towards Porous Organic Polymers
journal, May 2017

  • Troschke, Erik; Grätz, Sven; Lübken, Tilo
  • Angewandte Chemie International Edition, Vol. 56, Issue 24
  • DOI: 10.1002/anie.201702303

Perfluorinated Covalent Triazine Framework Derived Hybrids for the Highly Selective Electroconversion of Carbon Dioxide into Methane
journal, September 2018

  • Wang, Yuanshuang; Chen, Junxiang; Wang, Genxiang
  • Angewandte Chemie, Vol. 130, Issue 40
  • DOI: 10.1002/ange.201807173

Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene
journal, January 2010

  • Ren, Hao; Ben, Teng; Wang, Ensi
  • Chem. Commun., Vol. 46, Issue 2
  • DOI: 10.1039/B914761F

A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture
journal, January 2013

  • Zhao, Yunfeng; Yao, Ke Xin; Teng, Baiyang
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee42548g

Opportunity of Atomically Thin Two-Dimensional Catalysts for Promoting CO 2 Electroreduction
journal, November 2020


A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation
journal, June 2012

  • Zhu, Xiang; Tian, Chengcheng; Mahurin, Shannon M.
  • Journal of the American Chemical Society, Vol. 134, Issue 25, p. 10478-10484
  • DOI: 10.1021/ja304879c

Ionothermalsynthese von porösen kovalenten Triazin- Polymernetzwerken
journal, April 2008

  • Kuhn, Pierre; Antonietti, Markus; Thomas, Arne
  • Angewandte Chemie, Vol. 120, Issue 18
  • DOI: 10.1002/ange.200705710

From Microporous Regular Frameworks to Mesoporous Materials with Ultrahigh Surface Area: Dynamic Reorganization of Porous Polymer Networks
journal, October 2008

  • Kuhn, Pierre; Forget, Aurélien; Su, Dangsheng
  • Journal of the American Chemical Society, Vol. 130, Issue 40
  • DOI: 10.1021/ja803708s

Enantioselective Enolate Protonations: Friedel-Crafts Reactions with α-Substituted Acrylates
journal, December 2008

  • Sibi, Mukund P.; Coulomb, Julien; Stanley, Levi M.
  • Angewandte Chemie International Edition, Vol. 47, Issue 51
  • DOI: 10.1002/anie.200804221

Efficient Preparation of Anhydrous Metallic Triflates and Triflimides under Ultrasonic Activation
journal, January 2012

  • Legrave, Nathalie; Couhert, Audrey; Olivero, Sandra
  • European Journal of Organic Chemistry, Vol. 2012, Issue 5
  • DOI: 10.1002/ejoc.201101686

Solution Synthesis of Semiconducting Two-Dimensional Polymer via Trimerization of Carbonitrile
journal, July 2017

  • Liu, Jingjing; Zan, Wu; Li, Ke
  • Journal of the American Chemical Society, Vol. 139, Issue 34
  • DOI: 10.1021/jacs.7b05025

Lithium‐Salt Mediated Synthesis of a Covalent Triazine Framework for Highly Stable Lithium Metal Batteries
journal, November 2019

  • Zhou, Tianhong; Zhao, Yan; Choi, Jang Wook
  • Angewandte Chemie, Vol. 131, Issue 47
  • DOI: 10.1002/ange.201908513

Rational Extension of the Family of Layered, Covalent, Triazine-Based Frameworks with Regular Porosity
journal, March 2010

  • Bojdys, Michael J.; Jeromenok, Jekaterina; Thomas, Arne
  • Advanced Materials, Vol. 22, Issue 19
  • DOI: 10.1002/adma.200903436

Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium-Sulfur Batteries
journal, January 2016

  • Talapaneni, Siddulu Naidu; Hwang, Tae Hoon; Je, Sang Hyun
  • Angewandte Chemie International Edition, Vol. 55, Issue 9
  • DOI: 10.1002/anie.201511553

Triazine Functionalized Porous Covalent Organic Framework for Photo-organocatalytic EZ Isomerization of Olefins
journal, March 2019

  • Bhadra, Mohitosh; Kandambeth, Sharath; Sahoo, Manoj K.
  • Journal of the American Chemical Society, Vol. 141, Issue 15
  • DOI: 10.1021/jacs.9b01891

Covalent Triazine Frameworks via a Low-Temperature Polycondensation Approach
journal, October 2017


What Fluorine Can Do in CO 2 Chemistry: Applications from Homogeneous to Heterogeneous Systems
journal, August 2020


Covalent Organic Frameworks Linked by Amine Bonding for Concerted Electrochemical Reduction of CO2
journal, July 2018


Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis
journal, April 2008

  • Kuhn, Pierre; Antonietti, Markus; Thomas, Arne
  • Angewandte Chemie International Edition, Vol. 47, Issue 18
  • DOI: 10.1002/anie.200705710

Crystalline Covalent Triazine Frameworks by In Situ Oxidation of Alcohols to Aldehyde Monomers
journal, August 2018

  • Liu, Manying; Huang, Qi; Wang, Shaolei
  • Angewandte Chemie International Edition, Vol. 57, Issue 37
  • DOI: 10.1002/anie.201806664

Metalltriflimidate sind bessere Katalysatoren für die organische Synthese als Metalltriflate - der Effekt eines stark delokalisierten Gegenions
journal, August 2010

  • Antoniotti, Sylvain; Dalla, Vincent; Duñach, Elisabet
  • Angewandte Chemie, Vol. 122, Issue 43
  • DOI: 10.1002/ange.200906407

Nanostructured Materials for Heterogeneous Electrocatalytic CO 2 Reduction and their Related Reaction Mechanisms
journal, July 2017

  • Zhang, Lei; Zhao, Zhi-Jian; Gong, Jinlong
  • Angewandte Chemie International Edition, Vol. 56, Issue 38
  • DOI: 10.1002/anie.201612214

Metal bis{(trifluoromethyl)sulfonyl}amide complexes: highly efficient Friedel–Crafts acylation catalysts
journal, January 2004

  • Earle, Martyn J.; Hakala, Ullastiina; McAuley, Barry J.
  • Chem. Commun., Issue 12
  • DOI: 10.1039/B403650F

Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes
journal, April 2019


Achieving Highly Efficient, Selective, and Stable CO 2 Reduction on Nitrogen-Doped Carbon Nanotubes
journal, April 2015


Covalent Triazine Frameworks as Emerging Heterogeneous Photocatalysts
journal, March 2021


In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO 2 Capture Performance
journal, September 2016

  • Zhu, Xiang; Tian, Chengcheng; Veith, Gabriel M.
  • Journal of the American Chemical Society, Vol. 138, Issue 36
  • DOI: 10.1021/jacs.6b07644

Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis-The Effect of a Highly Delocalized Counteranion
journal, August 2010

  • Antoniotti, Sylvain; Dalla, Vincent; Duñach, Elisabet
  • Angewandte Chemie International Edition, Vol. 49, Issue 43, p. 7860-7888
  • DOI: 10.1002/anie.200906407

Structural Evolution of 2D Microporous Covalent Triazine-Based Framework toward the Study of High-Performance Supercapacitors
journal, December 2014

  • Hao, Long; Ning, Jing; Luo, Bin
  • Journal of the American Chemical Society, Vol. 137, Issue 1
  • DOI: 10.1021/ja508693y

Covalent Triazine Frameworks via a Low-Temperature Polycondensation Approach
journal, October 2017

  • Wang, Kewei; Yang, Li-Ming; Wang, Xi
  • Angewandte Chemie International Edition, Vol. 56, Issue 45
  • DOI: 10.1002/anie.201708548

Metal-Free Carbon Materials for CO 2 Electrochemical Reduction
journal, September 2017


Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes
journal, July 2019

  • Ghosh, Indrajit; Khamrai, Jagadish; Savateev, Aleksandr
  • Science, Vol. 365, Issue 6451
  • DOI: 10.1126/science.aaw3254

A fluorine-containing hydrophobic covalent triazine framework with excellent selective CO 2 capture performance
journal, January 2018

  • Wang, Guangbo; Leus, Karen; Jena, Himanshu Sekhar
  • Journal of Materials Chemistry A, Vol. 6, Issue 15
  • DOI: 10.1039/C7TA08913A

Enantioselective Enolate Protonations: Friedel-Crafts Reactions with α-Substituted Acrylates
journal, December 2008

  • Sibi, Mukund P.; Coulomb, Julien; Stanley, Levi M.
  • Angewandte Chemie, Vol. 120, Issue 51
  • DOI: 10.1002/ange.200804221

Electrocatalytic and homogeneous approaches to conversion of CO 2 to liquid fuels
journal, January 2009

  • Benson, Eric E.; Kubiak, Clifford P.; Sathrum, Aaron J.
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B804323J

Metal-Free Fluorine-Doped Carbon Electrocatalyst for CO 2 Reduction Outcompeting Hydrogen Evolution
journal, April 2018

  • Xie, Jiafang; Zhao, Xiaotao; Wu, Maoxiang
  • Angewandte Chemie International Edition, Vol. 57, Issue 31
  • DOI: 10.1002/anie.201802055

Porous, Fluorescent, Covalent Triazine-Based Frameworks Via Room-Temperature and Microwave-Assisted Synthesis
journal, April 2012

  • Ren, Shijie; Bojdys, Michael J.; Dawson, Robert
  • Advanced Materials, Vol. 24, Issue 17
  • DOI: 10.1002/adma.201200751

Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO 2 to CO at low overpotential
journal, January 2020

  • Laemont, Andreas; Abednatanzi, Sara; Derakshandeh, Parviz Gohari
  • Green Chemistry, Vol. 22, Issue 10
  • DOI: 10.1039/D0GC00090F

Crystalline Covalent Triazine Frameworks by In Situ Oxidation of Alcohols to Aldehyde Monomers
journal, August 2018


Carbon- and Nitrogen-Based Organic Frameworks
journal, May 2015


Covalent Triazine Frameworks Prepared from 1,3,5-Tricyanobenzene
journal, April 2013

  • Katekomol, Phisan; Roeser, Jérôme; Bojdys, Michael
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm303751n