DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine learning dynamic correlation in chemical kinetics

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1825547
Grant/Contract Number:  
FG02-07ER46474
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Name: Journal of Chemical Physics Journal Volume: 155 Journal Issue: 14; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Kim, Changhae Andrew, Ricke, Nathan D., and Van Voorhis, Troy. Machine learning dynamic correlation in chemical kinetics. United States: N. p., 2021. Web. doi:10.1063/5.0065874.
Kim, Changhae Andrew, Ricke, Nathan D., & Van Voorhis, Troy. Machine learning dynamic correlation in chemical kinetics. United States. https://doi.org/10.1063/5.0065874
Kim, Changhae Andrew, Ricke, Nathan D., and Van Voorhis, Troy. Thu . "Machine learning dynamic correlation in chemical kinetics". United States. https://doi.org/10.1063/5.0065874.
@article{osti_1825547,
title = {Machine learning dynamic correlation in chemical kinetics},
author = {Kim, Changhae Andrew and Ricke, Nathan D. and Van Voorhis, Troy},
abstractNote = {},
doi = {10.1063/5.0065874},
journal = {Journal of Chemical Physics},
number = 14,
volume = 155,
place = {United States},
year = {2021},
month = {10}
}

Works referenced in this record:

Spatial heterogeneity and anomalous kinetics: emergent patterns in diffusion-limited predatory-prey interaction
journal, January 1995

  • Keitt, Timothy H.; Johnson, Alan R.
  • Journal of Theoretical Biology, Vol. 172, Issue 2
  • DOI: 10.1006/jtbi.1995.0010

Statistical Mechanics of Population: The Lattice Lotka-Volterra Model
journal, December 1992

  • Matsuda, H.; Ogita, N.; Sasaki, A.
  • Progress of Theoretical Physics, Vol. 88, Issue 6
  • DOI: 10.1143/ptp/88.6.1035

Deep architectures for protein contact map prediction
journal, July 2012


Predicting protein residue–residue contacts using deep networks and boosting
journal, October 2012


Towards exact molecular dynamics simulations with machine-learned force fields
journal, September 2018

  • Chmiela, Stefan; Sauceda, Huziel E.; Müller, Klaus-Robert
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06169-2

The finite state projection algorithm for the solution of the chemical master equation
journal, January 2006

  • Munsky, Brian; Khammash, Mustafa
  • The Journal of Chemical Physics, Vol. 124, Issue 4
  • DOI: 10.1063/1.2145882

Building and refining a knowledge base for synthetic organic chemistry via the methodology of inductive and deductive machine learning
journal, November 1990

  • Gelernter, Herbert; Rose, J. Royce; Chen, Chyouhwa
  • Journal of Chemical Information and Computer Sciences, Vol. 30, Issue 4
  • DOI: 10.1021/ci00068a023

Prediction of Organic Reaction Outcomes Using Machine Learning
journal, April 2017


VODE: A Variable-Coefficient ODE Solver
journal, September 1989

  • Brown, Peter N.; Byrne, George D.; Hindmarsh, Alan C.
  • SIAM Journal on Scientific and Statistical Computing, Vol. 10, Issue 5
  • DOI: 10.1137/0910062

Comparison of different moment-closure approximations for stochastic chemical kinetics
journal, November 2015

  • Schnoerr, David; Sanguinetti, Guido; Grima, Ramon
  • The Journal of Chemical Physics, Vol. 143, Issue 18
  • DOI: 10.1063/1.4934990

Oscillatory dynamics in low-dimensional supports: A lattice Lotka–Volterra model
journal, May 1999

  • Provata, A.; Nicolis, G.; Baras, F.
  • The Journal of Chemical Physics, Vol. 110, Issue 17
  • DOI: 10.1063/1.478746

Adaptive networks: Coevolution of disease and topology
journal, September 2010

  • Marceau, Vincent; Noël, Pierre-André; Hébert-Dufresne, Laurent
  • Physical Review E, Vol. 82, Issue 3
  • DOI: 10.1103/physreve.82.036116

Investigation of External Quantum Efficiency Roll-Off in OLEDs Using the Mean-Field Steady-State Kinetic Model
journal, June 2020

  • McIsaac, Alexandra R.; Vaissier Welborn, Valerie; Einzinger, Markus
  • The Journal of Physical Chemistry C, Vol. 124, Issue 27
  • DOI: 10.1021/acs.jpcc.0c01863

Approximate accelerated stochastic simulation of chemically reacting systems
journal, July 2001

  • Gillespie, Daniel T.
  • The Journal of Chemical Physics, Vol. 115, Issue 4
  • DOI: 10.1063/1.1378322

Optimal approximation of discrete probability distribution with kth-order dependency and its application to combining multiple classifiers
journal, June 1997


Phase Transitions and Spatio-Temporal Fluctuations in Stochastic Lattice Lotka–Volterra Models
journal, June 2006

  • Mobilia, Mauro; Georgiev, Ivan T.; Täuber, Uwe C.
  • Journal of Statistical Physics, Vol. 128, Issue 1-2
  • DOI: 10.1007/s10955-006-9146-3

Finding Density Functionals with Machine Learning
journal, June 2012


SPINE X: Improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles
journal, November 2011

  • Faraggi, Eshel; Zhang, Tuo; Yang, Yuedong
  • Journal of Computational Chemistry, Vol. 33, Issue 3
  • DOI: 10.1002/jcc.21968

Machine learning of molecular electronic properties in chemical compound space
journal, September 2013


Learning moment closure in reaction-diffusion systems with spatial dynamic Boltzmann distributions
journal, June 2019


Transferable Machine-Learning Model of the Electron Density
journal, December 2018


Fractal kinetics and surface reactions
journal, March 1998

  • Moiny, F.; Dumont, Martine; Dagonnier, R.
  • The Journal of Chemical Physics, Vol. 108, Issue 11
  • DOI: 10.1063/1.475868

An overview of spatial microscopic and accelerated kinetic Monte Carlo methods
journal, February 2007

  • Chatterjee, Abhijit; Vlachos, Dionisios G.
  • Journal of Computer-Aided Materials Design, Vol. 14, Issue 2
  • DOI: 10.1007/s10820-006-9042-9

Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery
journal, September 2015

  • Pyzer-Knapp, Edward O.; Li, Kewei; Aspuru-Guzik, Alan
  • Advanced Functional Materials, Vol. 25, Issue 41
  • DOI: 10.1002/adfm.201501919

Understanding machine-learned density functionals: Understanding Machine-Learned Density Functionals
journal, November 2015

  • Li, Li; Snyder, John C.; Pelaschier, Isabelle M.
  • International Journal of Quantum Chemistry, Vol. 116, Issue 11
  • DOI: 10.1002/qua.25040

Kinetic phase transitions in a surface-reaction model: Mean-field theory
journal, November 1986


SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers
journal, September 2005

  • Hindmarsh, Alan C.; Brown, Peter N.; Grant, Keith E.
  • ACM Transactions on Mathematical Software, Vol. 31, Issue 3
  • DOI: 10.1145/1089014.1089020

Bifurcation analysis of the three‐variable model for the NO+CO reaction on Pt surfaces
journal, April 1992

  • Imbihl, R.; Fink, Th.; Krischer, K.
  • The Journal of Chemical Physics, Vol. 96, Issue 8
  • DOI: 10.1063/1.462615

Nonequilibrium phase transition in a lattice prey–predator system
journal, February 2000


Correlation models for childhood epidemics
journal, August 1997

  • Keeling, M. J.; Rand, D. A.; Morris, A. J.
  • Proceedings of the Royal Society of London. Series B: Biological Sciences, Vol. 264, Issue 1385
  • DOI: 10.1098/rspb.1997.0159

Structure-Based Classification of Chemical Reactions without Assignment of Reaction Centers
journal, October 2005

  • Zhang, Qing-You; Aires-de-Sousa, João
  • Journal of Chemical Information and Modeling, Vol. 45, Issue 6
  • DOI: 10.1021/ci0502707

Hidden physics models: Machine learning of nonlinear partial differential equations
journal, March 2018


Oscillatory Kinetics in Heterogeneous Catalysis
journal, May 1995


Mass fluctuation kinetics: Capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations
journal, January 2007

  • Gómez-Uribe, Carlos A.; Verghese, George C.
  • The Journal of Chemical Physics, Vol. 126, Issue 2
  • DOI: 10.1063/1.2408422

Analytical Note on Certain Rhythmic Relations in Organic Systems
journal, June 1920

  • Lotka, Alfred J.
  • Proceedings of the National Academy of Sciences, Vol. 6, Issue 7
  • DOI: 10.1073/pnas.6.7.410

A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations
journal, March 1975

  • Byrne, G. D.; Hindmarsh, A. C.
  • ACM Transactions on Mathematical Software, Vol. 1, Issue 1
  • DOI: 10.1145/355626.355636

Hybrid method for the chemical master equation
journal, November 2007


Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


A closure scheme for chemical master equations
journal, August 2013

  • Smadbeck, P.; Kaznessis, Y. N.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 35
  • DOI: 10.1073/pnas.1306481110

Approximating discrete probability distributions with dependence trees
journal, May 1968


An extension of the moment closure method
journal, September 2003


Oscillations and dynamics in a two-dimensional prey-predator system
journal, December 2002


Bypassing the Kohn-Sham equations with machine learning
journal, October 2017


On the Use of the Normal Approximation in the Treatment of Stochastic Processes
journal, July 1957


Effective degree network disease models
journal, February 2010

  • Lindquist, Jennifer; Ma, Junling; van den Driessche, P.
  • Journal of Mathematical Biology, Vol. 62, Issue 2
  • DOI: 10.1007/s00285-010-0331-2

Mean field treatment of heterogeneous steady state kinetics
journal, October 2017


Beyond mean-field approximations for accurate and computationally efficient models of on-lattice chemical kinetics
journal, July 2017

  • Pineda, M.; Stamatakis, M.
  • The Journal of Chemical Physics, Vol. 147, Issue 2
  • DOI: 10.1063/1.4991690

Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
journal, July 2013

  • Hansen, Katja; Montavon, Grégoire; Biegler, Franziska
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 8
  • DOI: 10.1021/ct400195d

Phase transitions and oscillations in a lattice prey-predator model
journal, April 2001


Learning dynamic Boltzmann distributions as reduced models of spatial chemical kinetics
journal, July 2018

  • Ernst, Oliver K.; Bartol, Thomas; Sejnowski, Terrence
  • The Journal of Chemical Physics, Vol. 149, Issue 3
  • DOI: 10.1063/1.5026403

Multiplicative Moments and Measures of Persistence in Ecology
journal, July 2000


Kinetic oscillations in the NO + CO reaction on Pt(100): Experiments and mathematical modeling
journal, August 1991

  • Fink, Th.; Dath, J. ‐P.; Imbihl, R.
  • The Journal of Chemical Physics, Vol. 95, Issue 3
  • DOI: 10.1063/1.461010

A generalized-constraint neural network model: Associating partially known relationships for nonlinear regressions☆
journal, May 2009


Contribution to the Theory of Periodic Reactions
journal, March 1910

  • Lotka, Alfred J.
  • The Journal of Physical Chemistry, Vol. 14, Issue 3
  • DOI: 10.1021/j150111a004

Sparse representation for a potential energy surface
journal, July 2014


Fractal Reaction Kinetics
journal, September 1988


A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
journal, December 1976