DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Target normal sheath acceleration with a large laser focal diameter

Abstract

In this work, the dependence of the laser-driven ion acceleration from thin titanium foils in the Target Normal Sheath Acceleration (TNSA) regime on target and laser parameters is explored using two dimensional particle-in-cell simulations. The oblique incidence (θL = 45°) and large focal spot size (w0 = 40μm) are chosen to take an advantage of quasi one-dimensional geometry of sheath fields and effective electron heating. This interaction setup also reveals low and achromatic angular divergence of a proton beam. It is shown that the hot electron temperature deviates from the ponderomotive scaling for short laser pulses and small pre-plasmas. This deviation is mainly due to the laser sweeping, as the short duration laser pulse each moment in time effectively heats only a fraction of a focal spot on the foil. This instantaneous partial heating results in an electron temperature deviation from the ponderomotive scaling and, thus, lower maximum proton energies than it could have been expected from the TNSA theory.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1825487
Alternate Identifier(s):
OSTI ID: 1737700
Grant/Contract Number:  
AC02-05CH11231; 17-SC-20-SC
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 27; Journal Issue: 12; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Femtosecond lasers; Particle-in-cell method; Computational physics; Particle acceleration

Citation Formats

Park, J., Bin, J. H., Steinke, S., Ji, Q., Bulanov, S. S., Thévenet, M., Vay, J. -L., Schenkel, T., Geddes, C. R., Schroeder, C. B., and Esarey, E. Target normal sheath acceleration with a large laser focal diameter. United States: N. p., 2020. Web. doi:10.1063/5.0020609.
Park, J., Bin, J. H., Steinke, S., Ji, Q., Bulanov, S. S., Thévenet, M., Vay, J. -L., Schenkel, T., Geddes, C. R., Schroeder, C. B., & Esarey, E. Target normal sheath acceleration with a large laser focal diameter. United States. https://doi.org/10.1063/5.0020609
Park, J., Bin, J. H., Steinke, S., Ji, Q., Bulanov, S. S., Thévenet, M., Vay, J. -L., Schenkel, T., Geddes, C. R., Schroeder, C. B., and Esarey, E. Mon . "Target normal sheath acceleration with a large laser focal diameter". United States. https://doi.org/10.1063/5.0020609. https://www.osti.gov/servlets/purl/1825487.
@article{osti_1825487,
title = {Target normal sheath acceleration with a large laser focal diameter},
author = {Park, J. and Bin, J. H. and Steinke, S. and Ji, Q. and Bulanov, S. S. and Thévenet, M. and Vay, J. -L. and Schenkel, T. and Geddes, C. R. and Schroeder, C. B. and Esarey, E.},
abstractNote = {In this work, the dependence of the laser-driven ion acceleration from thin titanium foils in the Target Normal Sheath Acceleration (TNSA) regime on target and laser parameters is explored using two dimensional particle-in-cell simulations. The oblique incidence (θL = 45°) and large focal spot size (w0 = 40μm) are chosen to take an advantage of quasi one-dimensional geometry of sheath fields and effective electron heating. This interaction setup also reveals low and achromatic angular divergence of a proton beam. It is shown that the hot electron temperature deviates from the ponderomotive scaling for short laser pulses and small pre-plasmas. This deviation is mainly due to the laser sweeping, as the short duration laser pulse each moment in time effectively heats only a fraction of a focal spot on the foil. This instantaneous partial heating results in an electron temperature deviation from the ponderomotive scaling and, thus, lower maximum proton energies than it could have been expected from the TNSA theory.},
doi = {10.1063/5.0020609},
journal = {Physics of Plasmas},
number = 12,
volume = 27,
place = {United States},
year = {Mon Dec 21 00:00:00 EST 2020},
month = {Mon Dec 21 00:00:00 EST 2020}
}

Works referenced in this record:

Short-pulse laser - plasma interactions
journal, June 1996


Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy
journal, June 2015

  • Bulanov, S. S.; Esarey, E.; Schroeder, C. B.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue 6
  • DOI: 10.1103/PhysRevSTAB.18.061302

Laser-Foil Acceleration of High-Energy Protons in Small-Scale Plasma Gradients
journal, July 2007


Forward Ion Acceleration in Thin Films Driven by a High-Intensity Laser
journal, May 2000


Measurements of Energetic Proton Transport through Magnetized Plasma from Intense Laser Interactions with Solids
journal, January 2000


Optics in the relativistic regime
journal, April 2006

  • Mourou, Gerard A.; Tajima, Toshiki; Bulanov, Sergei V.
  • Reviews of Modern Physics, Vol. 78, Issue 2
  • DOI: 10.1103/RevModPhys.78.309

Ion acceleration by superintense laser-plasma interaction
journal, May 2013

  • Macchi, Andrea; Borghesi, Marco; Passoni, Matteo
  • Reviews of Modern Physics, Vol. 85, Issue 2
  • DOI: 10.1103/RevModPhys.85.751

High-energy ion generation in interaction. of short laser pulse with high-density plasma
journal, March 2002

  • Sentoku, Y.; Bychenkov, V. Y.; Flippo, K.
  • Applied Physics B, Vol. 74, Issue 3
  • DOI: 10.1007/s003400200796

Energetic proton generation in ultra-intense laser–solid interactions
journal, February 2001

  • Wilks, S. C.; Langdon, A. B.; Cowan, T. E.
  • Physics of Plasmas, Vol. 8, Issue 2, p. 542-549
  • DOI: 10.1063/1.1333697

J×B heating by very intense laser light
journal, January 1985

  • Kruer, W. L.; Estabrook, Kent
  • Physics of Fluids, Vol. 28, Issue 1
  • DOI: 10.1063/1.865171

Effect of Plasma Scale Length on Multi-MeV Proton Production by Intense Laser Pulses
journal, February 2001


Efficiency of ion acceleration by a relativistically strong laser pulse in an underdense plasma
journal, March 2001

  • Kuznetsov, A. V.; Esirkepov, T. Zh.; Kamenets, F. F.
  • Plasma Physics Reports, Vol. 27, Issue 3
  • DOI: 10.1134/1.1354219

Proton acceleration mechanisms in high-intensity laser interaction with thin foils
journal, June 2005

  • d’Humières, Emmanuel; Lefebvre, Erik; Gremillet, Laurent
  • Physics of Plasmas, Vol. 12, Issue 6
  • DOI: 10.1063/1.1927097

Preplasma effects on laser ion generation from thin foil targets
journal, January 2020

  • Hadjisolomou, P.; Tsygvintsev, I. P.; Sasorov, P.
  • Physics of Plasmas, Vol. 27, Issue 1
  • DOI: 10.1063/1.5124457

Proton acceleration experiments and warm dense matter research using high power lasers
journal, November 2009


Comment on “Collimated Multi-MeV Ion Beams from High-Intensity Laser Interactions with Underdense Plasma”
journal, January 2007


High-order spline interpolations in the particle simulation
journal, April 1986


Not-so-resonant, resonant absorption
journal, July 1987


Effect of a laser prepulse on fast ion generation in the interaction of ultra-short intense laser pulses with a limited-mass foil target
journal, September 2006


Laser-driven ion acceleration: State of the art and emerging mechanisms
journal, March 2014

  • Borghesi, Marco
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 740
  • DOI: 10.1016/j.nima.2013.11.098

Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses
journal, December 2009


Absorption of ultra-intense laser pulses
journal, August 1992


Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory)
journal, September 2004


Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams
journal, November 2011

  • Haberberger, Dan; Tochitsky, Sergei; Fiuza, Frederico
  • Nature Physics, Vol. 8, Issue 1
  • DOI: 10.1038/nphys2130

Influence of a preplasma on electron heating and proton acceleration in ultraintense laser-foil interaction
journal, November 2008

  • Nuter, R.; Gremillet, L.; Combis, P.
  • Journal of Applied Physics, Vol. 104, Issue 10
  • DOI: 10.1063/1.3028274

Review of laser-driven ion sources and their applications
journal, April 2012

  • Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S.
  • Reports on Progress in Physics, Vol. 75, Issue 5
  • DOI: 10.1088/0034-4885/75/5/056401

Influence of subpicosecond laser pulse duration on proton acceleration
journal, May 2009

  • Carrié, M.; Lefebvre, E.; Flacco, A.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3138742

Acceleration of high charge ion beams with achromatic divergence by petawatt laser pulses
journal, February 2020


Effects of nanosecond-scale prepulse on generation of high-energy protons in target normal sheath acceleration
journal, June 2013

  • Wang, W. P.; Shen, B. F.; Zhang, H.
  • Applied Physics Letters, Vol. 102, Issue 22
  • DOI: 10.1063/1.4809522

Resonant Absorption of Laser Light by Plasma Targets
journal, March 1972


Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH 2 Targets
journal, May 2016


Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas
journal, August 2015


Laser ion acceleration for hadron therapy
journal, December 2014


Novel methods in the Particle-In-Cell accelerator Code-Framework Warp
journal, January 2012


Collisionless absorption in sharp-edged plasmas
journal, March 1992


Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration
journal, March 2010


Prepulse and amplified spontaneous emission effects on the interaction of a petawatt class laser with thin solid targets
journal, May 2014

  • Esirkepov, Timur Zh.; Koga, James K.; Sunahara, Atsushi
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 745
  • DOI: 10.1016/j.nima.2014.01.056

Enhanced stopping of macro-particles in particle-in-cell simulations
journal, May 2014

  • May, J.; Tonge, J.; Ellis, I.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4875708

Radiation pressure acceleration: The factors limiting maximum attainable ion energy
journal, April 2016

  • Bulanov, S. S.; Esarey, E.; Schroeder, C. B.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4946025

Plasma Expansion into a Vacuum
journal, May 2003


Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas
journal, August 2012

  • Palaniyappan, Sasi; Hegelich, B. Manuel; Wu, Hui-Chun
  • Nature Physics, Vol. 8, Issue 10
  • DOI: 10.1038/nphys2390

Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime
journal, April 2004


Scaling of proton acceleration driven by petawatt-laser–plasma interactions
journal, December 2006

  • Robson, L.; Simpson, P. T.; Clarke, R. J.
  • Nature Physics, Vol. 3, Issue 1
  • DOI: 10.1038/nphys476

Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets
journal, November 2008


Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets
journal, January 2006

  • Schwoerer, H.; Pfotenhauer, S.; Jäckel, O.
  • Nature, Vol. 439, Issue 7075
  • DOI: 10.1038/nature04492

Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas
journal, January 1997

  • Wilks, S. C.; Kruer, W. L.
  • IEEE Journal of Quantum Electronics, Vol. 33, Issue 11
  • DOI: 10.1109/3.641310