DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Rise of Neural Networks for Materials and Chemical Dynamics

Abstract

Machine learning (ML) is quickly becoming a premier tool for modeling chemical processes and materials. ML-based force fields, trained on large data sets of high-quality electron structure calculations, are particularly attractive due their unique combination of computational efficiency and physical accuracy. This Perspective summarizes some recent advances in the development of neural network-based interatomic potentials. Designing high-quality training data sets is crucial to overall model accuracy. One strategy is active learning, in which new data are automatically collected for atomic configurations that produce large ML uncertainties. Another strategy is to use the highest levels of quantum theory possible. Transfer learning allows training to a data set of mixed fidelity. A model initially trained to a large data set of density functional theory calculations can be significantly improved by retraining to a relatively small data set of expensive coupled cluster theory calculations. These advances are exemplified by applications to molecules and materials.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [2];  [2];  [1]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Utah State Univ., Logan, UT (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Utah State Univ., Logan, UT (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1825448
Report Number(s):
LA-UR-21-23254
Journal ID: ISSN 1948-7185
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Volume: 12; Journal Issue: 26; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Elements; Molecular mechanics; Energy; Neural networks; Molecules

Citation Formats

Kulichenko, Maksim, Smith, Justin Steven, Nebgen, Benjamin Tyler, Li, Ying Wai, Fedik, Nikita Sergeyevich, Boldyrev, Alexander I., Lubbers, Nicholas Edward, Barros, Kipton Marcos, and Tretiak, Sergei. The Rise of Neural Networks for Materials and Chemical Dynamics. United States: N. p., 2021. Web. doi:10.1021/acs.jpclett.1c01357.
Kulichenko, Maksim, Smith, Justin Steven, Nebgen, Benjamin Tyler, Li, Ying Wai, Fedik, Nikita Sergeyevich, Boldyrev, Alexander I., Lubbers, Nicholas Edward, Barros, Kipton Marcos, & Tretiak, Sergei. The Rise of Neural Networks for Materials and Chemical Dynamics. United States. https://doi.org/10.1021/acs.jpclett.1c01357
Kulichenko, Maksim, Smith, Justin Steven, Nebgen, Benjamin Tyler, Li, Ying Wai, Fedik, Nikita Sergeyevich, Boldyrev, Alexander I., Lubbers, Nicholas Edward, Barros, Kipton Marcos, and Tretiak, Sergei. Thu . "The Rise of Neural Networks for Materials and Chemical Dynamics". United States. https://doi.org/10.1021/acs.jpclett.1c01357. https://www.osti.gov/servlets/purl/1825448.
@article{osti_1825448,
title = {The Rise of Neural Networks for Materials and Chemical Dynamics},
author = {Kulichenko, Maksim and Smith, Justin Steven and Nebgen, Benjamin Tyler and Li, Ying Wai and Fedik, Nikita Sergeyevich and Boldyrev, Alexander I. and Lubbers, Nicholas Edward and Barros, Kipton Marcos and Tretiak, Sergei},
abstractNote = {Machine learning (ML) is quickly becoming a premier tool for modeling chemical processes and materials. ML-based force fields, trained on large data sets of high-quality electron structure calculations, are particularly attractive due their unique combination of computational efficiency and physical accuracy. This Perspective summarizes some recent advances in the development of neural network-based interatomic potentials. Designing high-quality training data sets is crucial to overall model accuracy. One strategy is active learning, in which new data are automatically collected for atomic configurations that produce large ML uncertainties. Another strategy is to use the highest levels of quantum theory possible. Transfer learning allows training to a data set of mixed fidelity. A model initially trained to a large data set of density functional theory calculations can be significantly improved by retraining to a relatively small data set of expensive coupled cluster theory calculations. These advances are exemplified by applications to molecules and materials.},
doi = {10.1021/acs.jpclett.1c01357},
journal = {Journal of Physical Chemistry Letters},
number = 26,
volume = 12,
place = {United States},
year = {Thu Jul 01 00:00:00 EDT 2021},
month = {Thu Jul 01 00:00:00 EDT 2021}
}

Works referenced in this record:

A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer
journal, January 2021


Application of machine learning methods for predicting new superhard materials
journal, August 2020

  • Mazhnik, Efim; Oganov, Artem R.
  • Journal of Applied Physics, Vol. 128, Issue 7
  • DOI: 10.1063/5.0012055

Amp: A modular approach to machine learning in atomistic simulations
journal, October 2016


Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods
journal, March 2015


A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples
journal, February 1982

  • Purvis, George D.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 76, Issue 4
  • DOI: 10.1063/1.443164

DREIDING: a generic force field for molecular simulations
journal, December 1990

  • Mayo, Stephen L.; Olafson, Barry D.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 94, Issue 26, p. 8897-8909
  • DOI: 10.1021/j100389a010

Pattern recognition of the 1H NMR spectra of sugar alditols using a neural network
journal, August 1989


Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
journal, June 2015

  • Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00831

Less is more: Sampling chemical space with active learning
journal, June 2018

  • Smith, Justin S.; Nebgen, Ben; Lubbers, Nicholas
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5023802

Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error
journal, October 2017

  • Faber, Felix A.; Hutchison, Luke; Huang, Bing
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00577

Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network
journal, August 2019

  • Zubatyuk, Roman; Smith, Justin S.; Leszczynski, Jerzy
  • Science Advances, Vol. 5, Issue 8
  • DOI: 10.1126/sciadv.aav6490

Neural networks and kernel ridge regression for excited states dynamics of CH 2 NH$_2^+$: From single-state to multi-state representations and multi-property machine learning models
journal, May 2020

  • Westermayr, Julia; Faber, Felix A.; Christensen, Anders S.
  • Machine Learning: Science and Technology, Vol. 1, Issue 2
  • DOI: 10.1088/2632-2153/ab88d0

Machine-learned potentials for next-generation matter simulations
journal, May 2021


SchNet – A deep learning architecture for molecules and materials
journal, June 2018

  • Schütt, K. T.; Sauceda, H. E.; Kindermans, P. -J.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019779

Nonadiabatic Excited-State Dynamics with Machine Learning
journal, September 2018

  • Dral, Pavlo O.; Barbatti, Mario; Thiel, Walter
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 19
  • DOI: 10.1021/acs.jpclett.8b02469

DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
journal, July 2018


ChemSpider: An Online Chemical Information Resource
journal, November 2010

  • Pence, Harry E.; Williams, Antony
  • Journal of Chemical Education, Vol. 87, Issue 11
  • DOI: 10.1021/ed100697w

Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials
journal, January 2016

  • Shapeev, Alexander V.
  • Multiscale Modeling & Simulation, Vol. 14, Issue 3
  • DOI: 10.1137/15M1054183

Machine Learning Force Fields
journal, March 2021


Efficient Syntheses of Diverse, Medicinally Relevant Targets Planned by Computer and Executed in the Laboratory
journal, March 2018


Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field
journal, April 2010

  • Shivakumar, Devleena; Williams, Joshua; Wu, Yujie
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 5
  • DOI: 10.1021/ct900587b

Query by committee
conference, January 1992

  • Seung, H. S.; Opper, M.; Sompolinsky, H.
  • Proceedings of the fifth annual workshop on Computational learning theory - COLT '92
  • DOI: 10.1145/130385.130417

Evidence of Skewness and Sub-Gaussian Character in Temperature-Dependent Distributions of One Million Electronic Excitation Energies in PbS Quantum Dots
journal, January 2020

  • Scher, Jeremy A.; Govind, Niranjan; Chakraborty, Arindam
  • The Journal of Physical Chemistry Letters, Vol. 11, Issue 3
  • DOI: 10.1021/acs.jpclett.9b03103

PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges
journal, April 2019

  • Unke, Oliver T.; Meuwly, Markus
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 6
  • DOI: 10.1021/acs.jctc.9b00181

First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems
journal, August 2017


Predicting reaction performance in C–N cross-coupling using machine learning
journal, February 2018


Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning
journal, June 2018

  • Bereau, Tristan; DiStasio, Robert A.; Tkatchenko, Alexandre
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5009502

Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra
journal, January 2019

  • Ghosh, Kunal; Stuke, Annika; Todorović, Milica
  • Advanced Science, Vol. 6, Issue 9
  • DOI: 10.1002/advs.201801367

Machine Learning of Partial Charges Derived from High-Quality Quantum-Mechanical Calculations
journal, February 2018

  • Bleiziffer, Patrick; Schaller, Kay; Riniker, Sereina
  • Journal of Chemical Information and Modeling, Vol. 58, Issue 3
  • DOI: 10.1021/acs.jcim.7b00663

Two-layer Gaussian-based MCTDH study of the S 1S 0 vibronic absorption spectrum of formaldehyde using multiplicative neural network potentials
journal, August 2019

  • Koch, Werner; Bonfanti, Matteo; Eisenbrandt, Pierre
  • The Journal of Chemical Physics, Vol. 151, Issue 6
  • DOI: 10.1063/1.5113579

Multiview Joint Learning-Based Method for Identifying Small-Molecule-Associated MiRNAs by Integrating Pharmacological, Genomics, and Network Knowledge
journal, July 2020

  • Shen, Cong; Luo, Jiawei; Lai, Zihan
  • Journal of Chemical Information and Modeling, Vol. 60, Issue 8
  • DOI: 10.1021/acs.jcim.0c00244

Extending the accuracy of the SNAP interatomic potential form
journal, June 2018

  • Wood, Mitchell A.; Thompson, Aidan P.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5017641

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Discovering a Transferable Charge Assignment Model Using Machine Learning
journal, July 2018

  • Sifain, Andrew E.; Lubbers, Nicholas; Nebgen, Benjamin T.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 16
  • DOI: 10.1021/acs.jpclett.8b01939

Structural Deformation Controls Charge Losses in MAPbI 3 : Unsupervised Machine Learning of Nonadiabatic Molecular Dynamics
journal, May 2020


Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics
journal, January 2018

  • Yao, Kun; Herr, John E.; Toth, David W.
  • Chemical Science, Vol. 9, Issue 8
  • DOI: 10.1039/C7SC04934J

Lattice Neural Network Minimization Application of Neural Network Optimization for Locating the Global-minimum Conformations of Proteins
journal, August 1993


MP2 energy evaluation by direct methods
journal, December 1988


Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach
journal, April 2015

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 5
  • DOI: 10.1021/acs.jctc.5b00099

Applications of neural networks to fitting interatomic potential functions
journal, January 1999

  • Hobday, Steven; Smith, Roger; Belbruno, Joe
  • Modelling and Simulation in Materials Science and Engineering, Vol. 7, Issue 3
  • DOI: 10.1088/0965-0393/7/3/308

Joint entity and relation extraction based on a hybrid neural network
journal, September 2017


First-principles data set of 45,892 isolated and cation-coordinated conformers of 20 proteinogenic amino acids
journal, February 2016

  • Ropo, Matti; Schneider, Markus; Baldauf, Carsten
  • Scientific Data, Vol. 3, Issue 1
  • DOI: 10.1038/sdata.2016.9

Protein secondary structure prediction with a neural network.
journal, January 1989

  • Holley, L. H.; Karplus, M.
  • Proceedings of the National Academy of Sciences, Vol. 86, Issue 1
  • DOI: 10.1073/pnas.86.1.152

ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

Challenges for machine learning force fields in reproducing potential energy surfaces of flexible molecules
journal, March 2021

  • Vassilev-Galindo, Valentin; Fonseca, Gregory; Poltavsky, Igor
  • The Journal of Chemical Physics, Vol. 154, Issue 9
  • DOI: 10.1063/5.0038516

A Comparison of Quantum and Molecular Mechanical Methods to Estimate Strain Energy in Druglike Fragments
journal, May 2017

  • Sellers, Benjamin D.; James, Natalie C.; Gobbi, Alberto
  • Journal of Chemical Information and Modeling, Vol. 57, Issue 6
  • DOI: 10.1021/acs.jcim.6b00614

Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks
journal, September 2004


General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer
journal, January 2021


A Survey on Transfer Learning
journal, October 2010

  • Pan, Sinno Jialin; Yang, Qiang
  • IEEE Transactions on Knowledge and Data Engineering, Vol. 22, Issue 10
  • DOI: 10.1109/TKDE.2009.191

Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
journal, March 2016


Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

Deep Learning for Deep Chemistry: Optimizing the Prediction of Chemical Patterns
journal, November 2019


The MLIP package: Moment Tensor Potentials with MPI and Active Learning
journal, November 2020

  • Novikov, Ivan S.; Gubaev, Konstantin; Podryabinkin, Evgeny
  • Machine Learning: Science and Technology
  • DOI: 10.1088/2632-2153/abc9fe

Ensemble-Average Representation of Pt Clusters in Conditions of Catalysis Accessed through GPU Accelerated Deep Neural Network Fitting Global Optimization
journal, November 2016

  • Zhai, Huanchen; Alexandrova, Anastassia N.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 12
  • DOI: 10.1021/acs.jctc.6b00994

Machine learning of accurate energy-conserving molecular force fields
journal, May 2017

  • Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.
  • Science Advances, Vol. 3, Issue 5
  • DOI: 10.1126/sciadv.1603015

Universal fragment descriptors for predicting properties of inorganic crystals
journal, June 2017

  • Isayev, Olexandr; Oses, Corey; Toher, Cormac
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15679

MSnet: A Neural Network which Classifies Mass Spectra
journal, January 1990


ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
journal, January 2017

  • Smith, J. S.; Isayev, O.; Roitberg, A. E.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/C6SC05720A

The Chemical Space Project
journal, February 2015

  • Reymond, Jean-Louis
  • Accounts of Chemical Research, Vol. 48, Issue 3
  • DOI: 10.1021/ar500432k

Towards exact molecular dynamics simulations with machine-learned force fields
journal, September 2018

  • Chmiela, Stefan; Sauceda, Huziel E.; Müller, Klaus-Robert
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06169-2

Deep reinforcement learning for de novo drug design
journal, July 2018

  • Popova, Mariya; Isayev, Olexandr; Tropsha, Alexander
  • Science Advances, Vol. 4, Issue 7
  • DOI: 10.1126/sciadv.aap7885

Charge equilibration for molecular dynamics simulations
journal, April 1991

  • Rappe, Anthony K.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 95, Issue 8
  • DOI: 10.1021/j100161a070

Neural network models of potential energy surfaces
journal, September 1995

  • Blank, Thomas B.; Brown, Steven D.; Calhoun, August W.
  • The Journal of Chemical Physics, Vol. 103, Issue 10
  • DOI: 10.1063/1.469597

Machine Learning for Electronically Excited States of Molecules
journal, November 2020


Molecular mechanics. The MM3 force field for hydrocarbons. 1
journal, November 1989

  • Allinger, Norman L.; Yuh, Young H.; Lii, Jenn Huei
  • Journal of the American Chemical Society, Vol. 111, Issue 23
  • DOI: 10.1021/ja00205a001

Deep Generative Models for Molecular Science
journal, January 2018

  • Jørgensen, Peter B.; Schmidt, Mikkel N.; Winther, Ole
  • Molecular Informatics, Vol. 37, Issue 1-2
  • DOI: 10.1002/minf.201700133

Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
journal, September 1998

  • Elstner, M.; Porezag, D.; Jungnickel, G.
  • Physical Review B, Vol. 58, Issue 11, p. 7260-7268
  • DOI: 10.1103/PhysRevB.58.7260

Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
journal, March 2015


TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials
journal, June 2020

  • Gao, Xiang; Ramezanghorbani, Farhad; Isayev, Olexandr
  • Journal of Chemical Information and Modeling, Vol. 60, Issue 7
  • DOI: 10.1021/acs.jcim.0c00451

Molecular Dynamics with On-the-Fly Machine Learning of Quantum-Mechanical Forces
journal, March 2015


Machine learning in materials informatics: recent applications and prospects
journal, December 2017

  • Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0056-5

Perspective: Machine learning potentials for atomistic simulations
journal, November 2016

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 145, Issue 17
  • DOI: 10.1063/1.4966192

Machine Learning for Absorption Cross Sections
journal, August 2020

  • Xue, Bao-Xin; Barbatti, Mario; Dral, Pavlo O.
  • The Journal of Physical Chemistry A, Vol. 124, Issue 35
  • DOI: 10.1021/acs.jpca.0c05310

Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu
journal, April 2008


Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model
journal, June 1985

  • Dewar, Michael J. S.; Zoebisch, Eve G.; Healy, Eamonn F.
  • Journal of the American Chemical Society, Vol. 107, Issue 13
  • DOI: 10.1021/ja00299a024

Quantum Chemistry in the Age of Machine Learning
journal, March 2020


OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins
journal, December 2015

  • Harder, Edward; Damm, Wolfgang; Maple, Jon
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 1
  • DOI: 10.1021/acs.jctc.5b00864

Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence
journal, March 2021


Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems
journal, January 2018


Description of the potential energy surface of the water dimer with an artificial neural network
journal, June 1997


Discovering the building blocks of atomic systems using machine learning: application to grain boundaries
journal, August 2017

  • Rosenbrock, Conrad W.; Homer, Eric R.; Csányi, Gábor
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0027-x

Hierarchical modeling of molecular energies using a deep neural network
journal, June 2018

  • Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5011181

ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
journal, December 2018


Automated discovery of a robust interatomic potential for aluminum
journal, February 2021


Data-Driven Learning of Total and Local Energies in Elemental Boron
journal, April 2018


Learning molecular energies using localized graph kernels
journal, March 2017

  • Ferré, Grégoire; Haut, Terry; Barros, Kipton
  • The Journal of Chemical Physics, Vol. 146, Issue 11
  • DOI: 10.1063/1.4978623

Gaussian approximation potentials: A brief tutorial introduction
journal, April 2015

  • Bartók, Albert P.; Csányi, Gábor
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24927

Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks
journal, July 2018

  • Nebgen, Benjamin; Lubbers, Nicholas; Smith, Justin S.
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 9
  • DOI: 10.1021/acs.jctc.8b00524

Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
journal, July 2019


Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics
journal, April 2020

  • Westermayr, Julia; Gastegger, Michael; Marquetand, Philipp
  • The Journal of Physical Chemistry Letters, Vol. 11, Issue 10
  • DOI: 10.1021/acs.jpclett.0c00527

Physically informed artificial neural networks for atomistic modeling of materials
journal, May 2019


Machine learning unifies the modeling of materials and molecules
journal, December 2017

  • Bartók, Albert P.; De, Sandip; Poelking, Carl
  • Science Advances, Vol. 3, Issue 12
  • DOI: 10.1126/sciadv.1701816

Energy-free machine learning force field for aluminum
journal, August 2017


The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules
journal, May 2020


Spectroscopic Investigation of the Effect of Microstructure and Energetic Offset on the Nature of Interfacial Charge Transfer States in Polymer: Fullerene Blends
journal, February 2019

  • Dimitrov, S. D.; Azzouzi, M.; Wu, J.
  • Journal of the American Chemical Society, Vol. 141, Issue 11
  • DOI: 10.1021/jacs.8b11484

Structural analysis of Si(111)‐7×7 by UHV‐transmission electron diffraction and microscopy
journal, May 1985

  • Takayanagi, K.; Tanishiro, Y.; Takahashi, M.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 3, Issue 3
  • DOI: 10.1116/1.573160

tmQM Dataset—Quantum Geometries and Properties of 86k Transition Metal Complexes
journal, November 2020

  • Balcells, David; Skjelstad, Bastian Bjerkem
  • Journal of Chemical Information and Modeling, Vol. 60, Issue 12
  • DOI: 10.1021/acs.jcim.0c01041

Constructing high-dimensional neural network potentials: A tutorial review
journal, March 2015

  • Behler, Jörg
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24890

Advancing Physical Chemistry with Machine Learning
journal, November 2020


Coupling Molecular Dynamics and Deep Learning to Mine Protein Conformational Space
journal, June 2019


Machine learning for interatomic potential models
journal, February 2020

  • Mueller, Tim; Hernandez, Alberto; Wang, Chuhong
  • The Journal of Chemical Physics, Vol. 152, Issue 5
  • DOI: 10.1063/1.5126336

Machine-learning-assisted materials discovery using failed experiments
journal, May 2016

  • Raccuglia, Paul; Elbert, Katherine C.; Adler, Philip D. F.
  • Nature, Vol. 533, Issue 7601
  • DOI: 10.1038/nature17439

Quantum chemistry structures and properties of 134 kilo molecules
journal, August 2014

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Scientific Data, Vol. 1, Issue 1
  • DOI: 10.1038/sdata.2014.22

Combined first-principles calculation and neural-network correction approach for heat of formation
journal, December 2003

  • Hu, LiHong; Wang, XiuJun; Wong, LaiHo
  • The Journal of Chemical Physics, Vol. 119, Issue 22
  • DOI: 10.1063/1.1630951

Graphics Processing Unit-Accelerated Semiempirical Born Oppenheimer Molecular Dynamics Using PyTorch
journal, July 2020

  • Zhou, Guoqing; Nebgen, Ben; Lubbers, Nicholas
  • Journal of Chemical Theory and Computation, Vol. 16, Issue 8
  • DOI: 10.1021/acs.jctc.0c00243

Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens
journal, June 2020

  • Devereux, Christian; Smith, Justin S.; Davis, Kate K.
  • Journal of Chemical Theory and Computation, Vol. 16, Issue 7
  • DOI: 10.1021/acs.jctc.0c00121