DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage

Abstract

Metastable metal hydrides such as AlH3 have many attractive features as hydrogen storage media, but generally require complex reaction schemes for regeneration following H2 release. Here in this paper, we demonstrate that the highly unfavorable thermodynamics of direct aluminum hydrogenation can be overcome by stabilizing alane within a nanoporous bipyridine-functionalized Covalent Triazine Framework (AlH3@CTF-bipyridine). This material and the counterpart AlH3@CTF-biphenyl rapidly desorb H2 between 95 and 154 °C, with desorption complete at 250 °C. Sieverts measurements, 27Al MAS NMR and 27Al{1H} REDOR experiments, and computational spectroscopy reveal that AlH3@CTF-bipyridine dehydrogenation is reversible at 60 °C under 700 bar hydrogen, >10 times lower pressure than that required to hydrogenate bulk aluminum. DFT calculations and EPR measurements support an unconventional mechanism whereby strong AlH 3 binding to bipyridine results in single-electron transfer to form AlH2(AlH3)n clusters. The resulting size-dependent charge redistribution alters the dehydrogenation/rehydrogenation thermochemistry, suggesting a novel strategy to enable reversibility in high-capacity metal hydrides.

Authors:
 [1];  [2];  [3];  [2];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [4];  [5];  [3];  [3];  [6];  [7];  [3];  [2];  [1]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  4. Univ. of Missouri, St. Louis, MO (United States); Univ. of Chicago, IL (United States)
  5. Univ. of Missouri, St. Louis, MO (United States)
  6. Max-Planck-Institut für Festkörperforschung, Stuttgart (Germany)
  7. Max-Planck-Institut für Festkörperforschung, Stuttgart (Germany)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office; German Research Foundation (DFG); Cluster of Excellence; USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1819642
Alternate Identifier(s):
OSTI ID: 1824722; OSTI ID: 1836205
Report Number(s):
LLNL-JRNL-820108
Journal ID: ISSN 1433-7851; ark:/13030/qt0zq8m88b
Grant/Contract Number:  
AC02-05CH11231; NA0003525; AC52-07NA27344; EXC2089; 639233
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 60; Journal Issue: 49; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Nanoconfinement; Hydrides; Covalent Triazine Frameworks; Hydrogen Storage; Coordination Chemistry

Citation Formats

Stavila, Vitalie, Li, Sichi, Dun, Chaochao, Marple, Maxwell A.T., Mason, Harris E., Snider, Jonathan L., Reynolds, Joseph E., El Gabaly, Farid, Sugar, Joshua D., Spataru, Catalin D., Zhou, Xiaowang, Dizdar, Brennan, Majzoub, Eric H., Chatterjee, Ruchira, Yano, Junko, Schlomberg, Hendrik, Lotsch, Bettina V., Urban, Jeffrey J., Wood, Brandon C., and Allendorf, Mark D. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. United States: N. p., 2021. Web. doi:10.1002/anie.202107507.
Stavila, Vitalie, Li, Sichi, Dun, Chaochao, Marple, Maxwell A.T., Mason, Harris E., Snider, Jonathan L., Reynolds, Joseph E., El Gabaly, Farid, Sugar, Joshua D., Spataru, Catalin D., Zhou, Xiaowang, Dizdar, Brennan, Majzoub, Eric H., Chatterjee, Ruchira, Yano, Junko, Schlomberg, Hendrik, Lotsch, Bettina V., Urban, Jeffrey J., Wood, Brandon C., & Allendorf, Mark D. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. United States. https://doi.org/10.1002/anie.202107507
Stavila, Vitalie, Li, Sichi, Dun, Chaochao, Marple, Maxwell A.T., Mason, Harris E., Snider, Jonathan L., Reynolds, Joseph E., El Gabaly, Farid, Sugar, Joshua D., Spataru, Catalin D., Zhou, Xiaowang, Dizdar, Brennan, Majzoub, Eric H., Chatterjee, Ruchira, Yano, Junko, Schlomberg, Hendrik, Lotsch, Bettina V., Urban, Jeffrey J., Wood, Brandon C., and Allendorf, Mark D. Sun . "Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage". United States. https://doi.org/10.1002/anie.202107507. https://www.osti.gov/servlets/purl/1819642.
@article{osti_1819642,
title = {Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage},
author = {Stavila, Vitalie and Li, Sichi and Dun, Chaochao and Marple, Maxwell A.T. and Mason, Harris E. and Snider, Jonathan L. and Reynolds, Joseph E. and El Gabaly, Farid and Sugar, Joshua D. and Spataru, Catalin D. and Zhou, Xiaowang and Dizdar, Brennan and Majzoub, Eric H. and Chatterjee, Ruchira and Yano, Junko and Schlomberg, Hendrik and Lotsch, Bettina V. and Urban, Jeffrey J. and Wood, Brandon C. and Allendorf, Mark D.},
abstractNote = {Metastable metal hydrides such as AlH3 have many attractive features as hydrogen storage media, but generally require complex reaction schemes for regeneration following H2 release. Here in this paper, we demonstrate that the highly unfavorable thermodynamics of direct aluminum hydrogenation can be overcome by stabilizing alane within a nanoporous bipyridine-functionalized Covalent Triazine Framework (AlH3@CTF-bipyridine). This material and the counterpart AlH3@CTF-biphenyl rapidly desorb H2 between 95 and 154 °C, with desorption complete at 250 °C. Sieverts measurements, 27Al MAS NMR and 27Al{1H} REDOR experiments, and computational spectroscopy reveal that AlH3@CTF-bipyridine dehydrogenation is reversible at 60 °C under 700 bar hydrogen, >10 times lower pressure than that required to hydrogenate bulk aluminum. DFT calculations and EPR measurements support an unconventional mechanism whereby strong AlH 3 binding to bipyridine results in single-electron transfer to form AlH2(AlH3)n clusters. The resulting size-dependent charge redistribution alters the dehydrogenation/rehydrogenation thermochemistry, suggesting a novel strategy to enable reversibility in high-capacity metal hydrides.},
doi = {10.1002/anie.202107507},
journal = {Angewandte Chemie (International Edition)},
number = 49,
volume = 60,
place = {United States},
year = {Sun Aug 29 00:00:00 EDT 2021},
month = {Sun Aug 29 00:00:00 EDT 2021}
}

Works referenced in this record:

Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis
journal, May 2019


Facile Cycling of Ti-Doped LiAlH 4 for High Performance Hydrogen Storage
journal, April 2009

  • Liu, Xiangfeng; McGrady, G. Sean; Langmi, Henrietta W.
  • Journal of the American Chemical Society, Vol. 131, Issue 14
  • DOI: 10.1021/ja809917g

Regeneration of Lithium Aluminum Hydride
journal, December 2008

  • Graetz, Jason; Wegrzyn, James; Reilly, James J.
  • Journal of the American Chemical Society, Vol. 130, Issue 52
  • DOI: 10.1021/ja805353w

Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Investigation
journal, March 2011

  • Wong, Bryan M.; Lacina, David; Nielsen, Ida M. B.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 15
  • DOI: 10.1021/jp112258s

Recent developments in aluminum-based hydrides for hydrogen storage
journal, June 2013


Formation and decomposition of AlH3 in the aluminum-hydrogen system
journal, October 2008

  • Saitoh, H.; Machida, A.; Katayama, Y.
  • Applied Physics Letters, Vol. 93, Issue 15
  • DOI: 10.1063/1.3002374

Pressure-induced structural and electronic changes in α Al H 3
journal, December 2006


Direct and Reversible Synthesis of AlH 3 −Triethylenediamine from Al and H 2
journal, December 2007

  • Graetz, Jason; Chaudhuri, Santanu; Wegrzyn, James
  • The Journal of Physical Chemistry C, Vol. 111, Issue 51
  • DOI: 10.1021/jp076804j

Regeneration of aluminium hydride using dimethylethylamine
journal, January 2010

  • Lacina, David; Wegrzyn, James; Reilly, James
  • Energy & Environmental Science, Vol. 3, Issue 8
  • DOI: 10.1039/c002064h

N -Alkylpyrrolidine·Alane Compounds for Energy Applications
journal, February 2013

  • Ni, Chengbao; Yang, Liu; Muckerman, James T.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 6
  • DOI: 10.1021/jp310848u

The direct and reversible hydrogenation of activated aluminium supported by piperidine
journal, January 2020

  • Sandig-Predzymirska, Lesia; Ortmeyer, Jochen; Wagler, Jörg
  • Dalton Transactions, Vol. 49, Issue 48
  • DOI: 10.1039/D0DT03175E

Nanostructured Metal Hydrides for Hydrogen Storage
journal, October 2018


Anomalous H 2 Desorption Rate of NaAlH 4 Confined in Nitrogen-Doped Nanoporous Carbon Frameworks
journal, April 2018


Reversible Hydrogen Storage by NaAlH 4 Confined within a Titanium-Functionalized MOF-74(Mg) Nanoreactor
journal, October 2012

  • Stavila, Vitalie; Bhakta, Raghunandan K.; Alam, Todd M.
  • ACS Nano, Vol. 6, Issue 11
  • DOI: 10.1021/nn304514c

Nanointerface-Driven Reversible Hydrogen Storage in the Nanoconfined Li-N-H System
journal, January 2017

  • Wood, Brandon C.; Stavila, Vitalie; Poonyayant, Natchapol
  • Advanced Materials Interfaces, Vol. 4, Issue 3
  • DOI: 10.1002/admi.201600803

Reversing the Irreversible: Thermodynamic Stabilization of LiAlH 4 Nanoconfined Within a Nitrogen-Doped Carbon Host
journal, May 2021


Aluminium doping composite metal-organic framework by alane nanoconfinement: Impact on the room temperature hydrogen uptake
journal, May 2017

  • Prabhakaran, Prasanth Karikkethu; Catoire, Laurent; Deschamps, Johnny
  • Microporous and Mesoporous Materials, Vol. 243
  • DOI: 10.1016/j.micromeso.2017.02.032

Hydrogen storage properties of nanoconfined aluminium hydride (AlH3)
journal, February 2019

  • Wang, Lei; Rawal, Aditya; Aguey-Zinsou, Kondo-Francois
  • Chemical Engineering Science, Vol. 194
  • DOI: 10.1016/j.ces.2018.02.014

Covalent Organic Frameworks: Organic Chemistry Extended into Two and Three Dimensions
journal, May 2019


The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Postsynthetic Modification: An Enabling Technology for the Advancement of Metal–Organic Frameworks
journal, July 2020


Metal–Organic Frameworks as Heterogeneous Catalysts in Hydrogen Production from Lightweight Inorganic Hydrides
journal, July 2017


Nanoconfinement of Molecular Magnesium Borohydride Captured in a Bipyridine-Functionalized Metal–Organic Framework
journal, July 2020


Insight into the Catalytic Effects of Open Metal Sites in Metal–Organic Frameworks on Hydride Dehydrogenation via Nanoconfinement
journal, August 2019


Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis
journal, April 2008

  • Kuhn, Pierre; Antonietti, Markus; Thomas, Arne
  • Angewandte Chemie International Edition, Vol. 47, Issue 18
  • DOI: 10.1002/anie.200705710

Ionothermalsynthese von porösen kovalenten Triazin- Polymernetzwerken
journal, April 2008

  • Kuhn, Pierre; Antonietti, Markus; Thomas, Arne
  • Angewandte Chemie, Vol. 120, Issue 18
  • DOI: 10.1002/ange.200705710

A functional triazine framework based on N-heterocyclic building blocks
journal, January 2012

  • Hug, Stephan; Tauchert, Michael E.; Li, Shen
  • Journal of Materials Chemistry, Vol. 22, Issue 28
  • DOI: 10.1039/c2jm31248d

Toward Tailorable Porous Organic Polymer Networks: A High-Temperature Dynamic Polymerization Scheme Based on Aromatic Nitriles
journal, January 2009

  • Kuhn, Pierre; Thomas, Arne; Antonietti, Markus
  • Macromolecules, Vol. 42, Issue 1
  • DOI: 10.1021/ma802322j

The P,T-State Diagram and Solid Phase Synthesis of Aluminum Hydride
journal, January 1995

  • Konovalov, Sergei K.; Bulychev, Boris M.
  • Inorganic Chemistry, Vol. 34, Issue 1
  • DOI: 10.1021/ic00105a029

Efficient production of hydrogen from formic acid using a Covalent Triazine Framework supported molecular catalyst
journal, February 2015


Direct Synthesis of Complex Metal Hydrides
journal, June 1963

  • Ashby, E. C.; Brendel, G. J.; Redman, H. E.
  • Inorganic Chemistry, Vol. 2, Issue 3
  • DOI: 10.1021/ic50007a018

Dehydriding process of α-AlH3 observed by transmission electron microscopy and electron energy-loss spectroscopy
journal, June 2009

  • Muto, S.; Tatsumi, K.; Ikeda, K.
  • Journal of Applied Physics, Vol. 105, Issue 12
  • DOI: 10.1063/1.3151958

Identifying the Role of Dynamic Surface Hydroxides in the Dehydrogenation of Ti-Doped NaAlH 4
journal, January 2019

  • White, James L.; Rowberg, Andrew J. E.; Wan, Liwen F.
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 5
  • DOI: 10.1021/acsami.8b17650

An in situ XPS study of oxygen plasma cleaning of aluminum surfaces
journal, July 1997


NMR studies of the aluminum hydride phases and their stabilities
journal, October 2007


Aluminohydrides: Structures, NMR, solid-state reactions
journal, November 2008


Ab initio 27 Al NMR chemical shifts and quadrupolar parameters for Al 2 O 3 phases and their precursors
journal, December 2011

  • Ferreira, Ary R.; Küçükbenli, Emine; Leitão, Alexandre A.
  • Physical Review B, Vol. 84, Issue 23
  • DOI: 10.1103/PhysRevB.84.235119

Structure of Amorphous Aluminum Oxide
journal, August 2009


Stability enhancement by particle size reduction in AlH3
journal, September 2011


Radicals in metal–organic frameworks
journal, January 2014

  • Faust, Thomas B.; D'Alessandro, Deanna M.
  • RSC Adv., Vol. 4, Issue 34
  • DOI: 10.1039/c4ra00958d

Single electron transfer reaction of aluminum hydride with nitrogen-containing heterocycles. ESR characterization of the radical products
journal, March 1984

  • Kaim, Wolfgang
  • Journal of the American Chemical Society, Vol. 106, Issue 6
  • DOI: 10.1021/ja00318a026

Direct Hydrogenation of Aluminum via Stabilization with Triethylenediamine: A Mechanochemical Approach to Synthesize the Triethylenediamine ⋅ AlH 3 Adduct
journal, February 2019

  • Ortmeyer, Jochen; Bodach, Alexander; Sandig‐Predzymirska, Lesia
  • ChemPhysChem, Vol. 20, Issue 10
  • DOI: 10.1002/cphc.201801093

Aluminum hydride as a hydrogen and energy storage material: Past, present and future
journal, September 2011


LiAlH 4 supported on TiO 2 /hierarchically porous carbon nanocomposites with enhanced hydrogen storage properties
journal, January 2016

  • Zhao, Yaran; Han, Mo; Wang, Haixia
  • Inorganic Chemistry Frontiers, Vol. 3, Issue 12
  • DOI: 10.1039/C6QI00200E

Nanoconfined lithium aluminium hydride (LiAlH4) and hydrogen reversibility
journal, May 2017


Reversible Li-insertion in nanoscaffolds: A promising strategy to alter the hydrogen sorption properties of Li-based complex hydrides
journal, April 2016


Toward Higher Voltage Solid‐State Batteries by Metastability and Kinetic Stability Design
journal, July 2020

  • Ye, Luhan; Fitzhugh, William; Gil‐González, Eva
  • Advanced Energy Materials, Vol. 10, Issue 34
  • DOI: 10.1002/aenm.202001569

Urea-Assisted Room Temperature Stabilized Metastable β-NiMoO 4 : Experimental and Theoretical Insights into its Unique Bifunctional Activity toward Oxygen Evolution and Supercapacitor
journal, March 2017

  • Ratha, Satyajit; Samantara, Aneeya K.; Singha, Krishna Kanta
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 11
  • DOI: 10.1021/acsami.6b16250

Ensembles of Metastable States Govern Heterogeneous Catalysis on Dynamic Interfaces
journal, January 2020

  • Zhang, Zisheng; Zandkarimi, Borna; Alexandrova, Anastassia N.
  • Accounts of Chemical Research, Vol. 53, Issue 2
  • DOI: 10.1021/acs.accounts.9b00531