DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the Origin of Sinter‐Resistance and Catalyst Accessibility in Raspberry‐Colloid‐Templated Catalyst Design

Abstract

Abstract Nanoparticle (NP) sintering is a major cause of the deactivation of supported catalysts. Raspberry‐colloid‐templated (RCT) catalysts are an emerging class of materials that show an unprecedented level of sinter‐resistance and exhibit high catalytic activity. Here a comprehensive study of the origin of NP stability and accessibility in RCT catalysts using theoretical modeling, 3D electron microscopy, and epitaxial overgrowth is reported. The approach is showcased for silica‐based RCT catalysts containing dilute Pd‐in‐Au NPs previously used in hydrogenation and oxidation catalysis. Modeling of the contact line of the silica precursor infiltrating into the assembled raspberry colloids suggests that a large part of the particles must be embedded into silica, which is confirmed by quantitative visualization of >200 individual NPs by dual‐axis electron tomography. The RCT catalysts have a unique structure in which all NPs reside at the pore wall but have >50% of their surface embedded in the matrix, giving rise to the strongly enhanced thermal and mechanical stability. Importantly, epitaxial overgrowth of Ag on the supported NPs reveals that not only the NP surface exposed to the pore but the embedded interface as well remained chemically accessible. This mechanistic understanding provides valuable guidance in the design of stable catalytic materials.

Authors:
 [1];  [2];  [3];  [3];  [4];  [5];  [6];  [1]; ORCiD logo [1]
  1. Department of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA, Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
  2. Center for Nanoscale Systems Harvard University Cambridge MA 02138 USA
  3. Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
  4. Department of Mechanical Engineering Northwestern University Evanston IL 60208 USA
  5. Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA, Computational Research Division Lawrence Berkeley Laboratory Berkeley CA 94720 USA
  6. Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA, Center for Nanoscale Systems Harvard University Cambridge MA 02138 USA
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1818828
Alternate Identifier(s):
OSTI ID: 1818829; OSTI ID: 1825003
Grant/Contract Number:  
AC02-05CH11231; SC0012573; 1541959
Resource Type:
Published Article
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Name: Advanced Functional Materials Journal Volume: 31 Journal Issue: 49; Journal ID: ISSN 1616-301X
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalyst design; chemical accessibility; epitaxial overgrowth; metal-support interfaces; sintering

Citation Formats

van der Hoeven, Jessi E. S., Krämer, Stephan, Dussi, Simone, Shirman, Tanya, Park, Kyoo‐Chul K., Rycroft, Chris H., Bell, David C., Friend, Cynthia M., and Aizenberg, Joanna. On the Origin of Sinter‐Resistance and Catalyst Accessibility in Raspberry‐Colloid‐Templated Catalyst Design. Germany: N. p., 2021. Web. doi:10.1002/adfm.202106876.
van der Hoeven, Jessi E. S., Krämer, Stephan, Dussi, Simone, Shirman, Tanya, Park, Kyoo‐Chul K., Rycroft, Chris H., Bell, David C., Friend, Cynthia M., & Aizenberg, Joanna. On the Origin of Sinter‐Resistance and Catalyst Accessibility in Raspberry‐Colloid‐Templated Catalyst Design. Germany. https://doi.org/10.1002/adfm.202106876
van der Hoeven, Jessi E. S., Krämer, Stephan, Dussi, Simone, Shirman, Tanya, Park, Kyoo‐Chul K., Rycroft, Chris H., Bell, David C., Friend, Cynthia M., and Aizenberg, Joanna. Fri . "On the Origin of Sinter‐Resistance and Catalyst Accessibility in Raspberry‐Colloid‐Templated Catalyst Design". Germany. https://doi.org/10.1002/adfm.202106876.
@article{osti_1818828,
title = {On the Origin of Sinter‐Resistance and Catalyst Accessibility in Raspberry‐Colloid‐Templated Catalyst Design},
author = {van der Hoeven, Jessi E. S. and Krämer, Stephan and Dussi, Simone and Shirman, Tanya and Park, Kyoo‐Chul K. and Rycroft, Chris H. and Bell, David C. and Friend, Cynthia M. and Aizenberg, Joanna},
abstractNote = {Abstract Nanoparticle (NP) sintering is a major cause of the deactivation of supported catalysts. Raspberry‐colloid‐templated (RCT) catalysts are an emerging class of materials that show an unprecedented level of sinter‐resistance and exhibit high catalytic activity. Here a comprehensive study of the origin of NP stability and accessibility in RCT catalysts using theoretical modeling, 3D electron microscopy, and epitaxial overgrowth is reported. The approach is showcased for silica‐based RCT catalysts containing dilute Pd‐in‐Au NPs previously used in hydrogenation and oxidation catalysis. Modeling of the contact line of the silica precursor infiltrating into the assembled raspberry colloids suggests that a large part of the particles must be embedded into silica, which is confirmed by quantitative visualization of >200 individual NPs by dual‐axis electron tomography. The RCT catalysts have a unique structure in which all NPs reside at the pore wall but have >50% of their surface embedded in the matrix, giving rise to the strongly enhanced thermal and mechanical stability. Importantly, epitaxial overgrowth of Ag on the supported NPs reveals that not only the NP surface exposed to the pore but the embedded interface as well remained chemically accessible. This mechanistic understanding provides valuable guidance in the design of stable catalytic materials.},
doi = {10.1002/adfm.202106876},
journal = {Advanced Functional Materials},
number = 49,
volume = 31,
place = {Germany},
year = {Fri Sep 03 00:00:00 EDT 2021},
month = {Fri Sep 03 00:00:00 EDT 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adfm.202106876

Save / Share:

Works referenced in this record:

Electron tomography at 2.4-ångström resolution
journal, March 2012

  • Scott, M. C.; Chen, Chien-Chun; Mecklenburg, Matthew
  • Nature, Vol. 483, Issue 7390
  • DOI: 10.1038/nature10934

Bimetallic Nanocrystals: Syntheses, Properties, and Applications
journal, July 2016


Structural Control over Bimetallic Core–Shell Nanorods for Surface-Enhanced Raman Spectroscopy
journal, March 2021

  • van der Hoeven, Jessi E. S.; Deng, Tian-Song; Albrecht, Wiebke
  • ACS Omega, Vol. 6, Issue 10
  • DOI: 10.1021/acsomega.0c06321

The Impact of Nanoscience on Heterogeneous Catalysis
journal, March 2003


New Architectures for Designed Catalysts: Selective Oxidation using AgAu Nanoparticles on Colloid-Templated Silica
journal, November 2017

  • Shirman, Tanya; Lattimer, Judith; Luneau, Mathilde
  • Chemistry - A European Journal, Vol. 24, Issue 8
  • DOI: 10.1002/chem.201704552

Enhancing catalytic performance of dilute metal alloy nanomaterials
journal, April 2020


Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research
journal, June 2015

  • Ercius, Peter; Alaidi, Osama; Rames, Matthew J.
  • Advanced Materials, Vol. 27, Issue 38
  • DOI: 10.1002/adma.201501015

Nanoreactors: Small Spaces, Big Implications in Chemistry
journal, June 2016

  • Petrosko, Sarah Hurst; Johnson, Robert; White, Henry
  • Journal of the American Chemical Society, Vol. 138, Issue 24
  • DOI: 10.1021/jacs.6b05393

Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts
journal, September 2016

  • Matsubu, John C.; Zhang, Shuyi; DeRita, Leo
  • Nature Chemistry, Vol. 9, Issue 2
  • DOI: 10.1038/nchem.2607

Progress in electron tomography to assess the 3D nanostructure of catalysts
journal, June 2013

  • Zečević, Jovana; de Jong, Krijn P.; de Jongh, Petra E.
  • Current Opinion in Solid State and Materials Science, Vol. 17, Issue 3
  • DOI: 10.1016/j.cossms.2013.04.002

The Surface Evolver
journal, January 1992


In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement
journal, January 2018


Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?
journal, April 2013

  • Hansen, Thomas W.; DeLaRiva, Andrew T.; Challa, Sivakumar R.
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar3002427

High-Temperature-Stable Catalysts by Hollow Sphere Encapsulation
journal, December 2006

  • Arnal, Pablo M.; Comotti, Massimiliano; Schüth, Ferdi
  • Angewandte Chemie International Edition, Vol. 45, Issue 48
  • DOI: 10.1002/anie.200603507

Mechanistic Understanding and the Rational Design of Sinter-Resistant Heterogeneous Catalysts
journal, September 2017


Connecting Hindered Transport in Porous Media across Length Scales: From Single-Pore to Macroscopic
journal, October 2020

  • Wu, Haichao; Wang, Dapeng; Schwartz, Daniel K.
  • The Journal of Physical Chemistry Letters, Vol. 11, Issue 20
  • DOI: 10.1021/acs.jpclett.0c02738

Dilute Pd/Au Alloy Nanoparticles Embedded in Colloid-Templated Porous SiO 2 : Stable Au-Based Oxidation Catalysts
journal, July 2019


Thermal stability of oxide-supported gold nanoparticles
journal, May 2019


Nanogold: A Quantitative Phase Map
journal, May 2009

  • Barnard, Amanda S.; Young, Neil P.; Kirkland, Angus I.
  • ACS Nano, Vol. 3, Issue 6
  • DOI: 10.1021/nn900220k

Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth
journal, July 2018


Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties.
journal, February 2016


Dual-Axis Tomography: An Approach with Alignment Methods That Preserve Resolution
journal, December 1997


Mechanism of Silver(I)-Assisted Growth of Gold Nanorods and Bipyramids
journal, October 2005

  • Liu, Mingzhao; Guyot-Sionnest, Philippe
  • The Journal of Physical Chemistry B, Vol. 109, Issue 47
  • DOI: 10.1021/jp054808n

One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity
journal, September 2013


scikit-image: image processing in Python
journal, January 2014

  • van der Walt, Stéfan; Schönberger, Johannes L.; Nunez-Iglesias, Juan
  • PeerJ, Vol. 2
  • DOI: 10.7717/peerj.453

Embedded Phases: A Way to Active and Stable Catalysts
journal, January 2010

  • De Rogatis, Loredana; Cargnello, Matteo; Gombac, Valentina
  • ChemSusChem, Vol. 3, Issue 1
  • DOI: 10.1002/cssc.200900151

Two-Dimensional Arrays of Colloidal Gold Particles:  A Flexible Approach to Macroscopic Metal Surfaces
journal, January 1996

  • Grabar, Katherine C.; Allison, Keith J.; Baker, Bonnie E.
  • Langmuir, Vol. 12, Issue 10
  • DOI: 10.1021/la950561h

Selective Deposition of Metal Nanoparticles Inside or Outside Multiwalled Carbon Nanotubes
journal, July 2009

  • Tessonnier, Jean-Philippe; Ersen, Ovidiu; Weinberg, Gisela
  • ACS Nano, Vol. 3, Issue 8
  • DOI: 10.1021/nn900647q

Reducing the missing wedge: High-resolution dual axis tomography of inorganic materials
journal, October 2006


Sintering-Resistant Nanoparticles in Wide-Mouthed Compartments for Sustained Catalytic Performance
journal, February 2017

  • Liu, Jia; Ji, Qingmin; Imai, Tsubasa
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep41773

Fiji: an open-source platform for biological-image analysis
journal, June 2012

  • Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2019

Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio
journal, January 2001

  • Jana, Nikhil R.; Gearheart, Latha; Murphy, Catherine J.
  • Chemical Communications, Issue 7
  • DOI: 10.1039/b100521i

New Strategies for the Preparation of Sinter‐Resistant Metal‐Nanoparticle‐Based Catalysts
journal, July 2019

  • Wang, Lingxiang; Wang, Liang; Meng, Xiangju
  • Advanced Materials, Vol. 31, Issue 50
  • DOI: 10.1002/adma.201901905

Classical strong metal–support interactions between gold nanoparticles and titanium dioxide
journal, October 2017


Double-tilt electron tomography
journal, October 1995


Engineering Catalytic Contacts and Thermal Stability: Gold/Iron Oxide Binary Nanocrystal Superlattices for CO Oxidation
journal, January 2013

  • Kang, Yijin; Ye, Xingchen; Chen, Jun
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja310427u

The location of gold nanoparticles on titania: A study by high resolution aberration-corrected electron microscopy and 3D electron tomography
journal, February 2011


The dynamic behavior of dilute metallic alloy Pd x Au 1−x /SiO 2 raspberry colloid templated catalysts under CO oxidation
journal, January 2021

  • Filie, Amanda; Shirman, Tanya; Aizenberg, Michael
  • Catalysis Science & Technology, Vol. 11, Issue 12
  • DOI: 10.1039/D1CY00469G

Quantitative Measurement of the Surface Self-Diffusion on Au Nanoparticles by Aberration-Corrected Transmission Electron Microscopy
journal, February 2012

  • Surrey, A.; Pohl, D.; Schultz, L.
  • Nano Letters, Vol. 12, Issue 12, p. 6071-6077
  • DOI: 10.1021/nl302280x

Silica–titania hybrids for structurally robust inverse opals with controllable refractive index
journal, January 2020

  • Phillips, Katherine R.; Shirman, Tanya; Aizenberg, Michael
  • Journal of Materials Chemistry C, Vol. 8, Issue 1
  • DOI: 10.1039/C9TC05103A

Corking and Uncorking a Catalytic Yolk-Shell Nanoreactor: Stable Gold Catalyst in Hollow Silica Nanosphere
journal, November 2011

  • Lin, Chen-Han; Liu, Xiaoyan; Wu, Si-Han
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 23
  • DOI: 10.1021/jz201336h

Computer Visualization of Three-Dimensional Image Data Using IMOD
journal, January 1996

  • Kremer, James R.; Mastronarde, David N.; McIntosh, J. Richard
  • Journal of Structural Biology, Vol. 116, Issue 1
  • DOI: 10.1006/jsbi.1996.0013

Electron Tomography of Nanoparticle Catalysts on Porous Supports:  A New Technique Based on Rutherford Scattering
journal, August 2001

  • Weyland, Matthew; Midgley, Paul A.; Thomas, John Meurig
  • The Journal of Physical Chemistry B, Vol. 105, Issue 33
  • DOI: 10.1021/jp011566s

Towards stable catalysts by controlling collective properties of supported metal nanoparticles
journal, November 2012

  • Prieto, Gonzalo; Zečević, Jovana; Friedrich, Heiner
  • Nature Materials, Vol. 12, Issue 1
  • DOI: 10.1038/nmat3471

Entropic Control of HD Exchange Rates over Dilute Pd-in-Au Alloy Nanoparticle Catalysts
journal, June 2021

  • van der Hoeven, Jessi E. S.; Ngan, Hio Tong; Taylor, Austin
  • ACS Catalysis, Vol. 11, Issue 12
  • DOI: 10.1021/acscatal.1c01400

Unlocking synergy in bimetallic catalysts by core–shell design
journal, May 2021

  • van der Hoeven, Jessi E. S.; Jelic, Jelena; Olthof, Liselotte A.
  • Nature Materials, Vol. 20, Issue 9
  • DOI: 10.1038/s41563-021-00996-3

Dual-Axis Electron Tomography for Three-Dimensional Observations of Polymeric Nanostructures
journal, October 2005

  • Sugimori, Hidekazu; Nishi, Toshio; Jinnai, Hiroshi
  • Macromolecules, Vol. 38, Issue 24
  • DOI: 10.1021/ma051705u

Role of pore curvature on the thermal stability of gold nanoparticles in mesoporous silica
journal, January 2004

  • Bore, Mangesh T.; Pham, Hien N.; Ward, Timothy L.
  • Chemical Communications, Issue 22
  • DOI: 10.1039/b407575g

Modular Design of Advanced Catalytic Materials Using Hybrid Organic-Inorganic Raspberry Particles
journal, December 2017

  • Shirman, Elijah; Shirman, Tanya; Shneidman, Anna V.
  • Advanced Functional Materials, Vol. 28, Issue 27
  • DOI: 10.1002/adfm.201704559