DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sound velocities in shock-compressed soda lime glass: Melting and liquid-state response

Abstract

Longitudinal sound velocities (and elastic moduli) were determined in soda lime glass (SLG) at peak shock stresses ranging between 40 and 90 GPa. Laser interferometry was used to obtain particle velocity histories and sound velocities by impacting SLG samples on lithium fluoride (LiF) optical windows. In all experiments, the SLG response consists of a sharp jump to a constant state followed by a release wave. The measured longitudinal sound velocities and moduli showed a marked decrease between 52 and 58 GPa, providing experimental evidence for the transformation from an amorphous solid to a liquid in shock-compressed SLG. Furthermore, the stress threshold (~55 GPa) for melting in SLG is considerably lower than the threshold reported in shock-compressed fused silica (~72 GPa), showing the effect of network-modifying cations on the onset of melting. The relative values of sound velocities, shock velocities, and the Hugoniot slopes—between 58 and 90 GPa—are fully consistent with the thermodynamic response of a shock-compressed liquid. Using the experimental results, the Grüneisen parameter (Γ) values were determined for liquid SLG to 90 GPa and then used to provide the Mie-Grüneisen equation of state for liquid SLG.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Washington State Univ., Pullman, WA (United States)
  2. Princeton Univ., NJ (United States)
Publication Date:
Research Org.:
Washington State Univ., Pullman, WA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1818142
Alternate Identifier(s):
OSTI ID: 1818151
Grant/Contract Number:  
NA0003957
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 104; Journal Issue: 1; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Crystal melting; Elastic modulus; Equations of state; Glass transition; Shock waves

Citation Formats

Renganathan, P., Duffy, T. S., and Gupta, Y. M. Sound velocities in shock-compressed soda lime glass: Melting and liquid-state response. United States: N. p., 2021. Web. doi:10.1103/physrevb.104.014113.
Renganathan, P., Duffy, T. S., & Gupta, Y. M. Sound velocities in shock-compressed soda lime glass: Melting and liquid-state response. United States. https://doi.org/10.1103/physrevb.104.014113
Renganathan, P., Duffy, T. S., and Gupta, Y. M. Tue . "Sound velocities in shock-compressed soda lime glass: Melting and liquid-state response". United States. https://doi.org/10.1103/physrevb.104.014113. https://www.osti.gov/servlets/purl/1818142.
@article{osti_1818142,
title = {Sound velocities in shock-compressed soda lime glass: Melting and liquid-state response},
author = {Renganathan, P. and Duffy, T. S. and Gupta, Y. M.},
abstractNote = {Longitudinal sound velocities (and elastic moduli) were determined in soda lime glass (SLG) at peak shock stresses ranging between 40 and 90 GPa. Laser interferometry was used to obtain particle velocity histories and sound velocities by impacting SLG samples on lithium fluoride (LiF) optical windows. In all experiments, the SLG response consists of a sharp jump to a constant state followed by a release wave. The measured longitudinal sound velocities and moduli showed a marked decrease between 52 and 58 GPa, providing experimental evidence for the transformation from an amorphous solid to a liquid in shock-compressed SLG. Furthermore, the stress threshold (~55 GPa) for melting in SLG is considerably lower than the threshold reported in shock-compressed fused silica (~72 GPa), showing the effect of network-modifying cations on the onset of melting. The relative values of sound velocities, shock velocities, and the Hugoniot slopes—between 58 and 90 GPa—are fully consistent with the thermodynamic response of a shock-compressed liquid. Using the experimental results, the Grüneisen parameter (Γ) values were determined for liquid SLG to 90 GPa and then used to provide the Mie-Grüneisen equation of state for liquid SLG.},
doi = {10.1103/physrevb.104.014113},
journal = {Physical Review B},
number = 1,
volume = 104,
place = {United States},
year = {Tue Jul 27 00:00:00 EDT 2021},
month = {Tue Jul 27 00:00:00 EDT 2021}
}

Works referenced in this record:

Structural Transformation and Melting in Gold Shock Compressed to 355 GPa
journal, July 2019


Changes to the shock response of fused quartz due to glass modification
journal, December 2008

  • Alexander, C. S.; Chhabildas, L. C.; Reinhart, W. D.
  • International Journal of Impact Engineering, Vol. 35, Issue 12
  • DOI: 10.1016/j.ijimpeng.2008.07.019

Sound velocities in highly oriented pyrolytic graphite shocked to 18 GPa: Orientational order dependence and elastic instability
journal, December 2015

  • Lucas, Marcel; Winey, J. M.; Gupta, Y. M.
  • Journal of Applied Physics, Vol. 118, Issue 24
  • DOI: 10.1063/1.4938195

In situ X-Ray Diffraction of Shock-Compressed Fused Silica
journal, March 2018


Hugoniot states and optical response of soda lime glass shock compressed to 120 GPa
journal, May 2020

  • Renganathan, P.; Duffy, T. S.; Gupta, Y. M.
  • Journal of Applied Physics, Vol. 127, Issue 20
  • DOI: 10.1063/5.0010396

Elastic moduli of hexagonal diamond and cubic diamond formed under shock compression
journal, March 2021


Laser interferometer for measuring high velocities of any reflecting surface
journal, November 1972

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 43, Issue 11
  • DOI: 10.1063/1.1660986

Compact system for high-speed velocimetry using heterodyne techniques
journal, August 2006

  • Strand, O. T.; Goosman, D. R.; Martinez, C.
  • Review of Scientific Instruments, Vol. 77, Issue 8
  • DOI: 10.1063/1.2336749

An amorphous phase on the anorthite hugoniot
journal, February 1993

  • Campbell, Andrew; Heinz, Dion
  • Geophysical Research Letters, Vol. 20, Issue 3
  • DOI: 10.1029/93GL00166

In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures
journal, May 2020

  • Morard, Guillaume; Hernandez, Jean-Alexis; Guarguaglini, Marco
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 22
  • DOI: 10.1073/pnas.1920470117

Sound Velocities in Shock‐Synthesized Stishovite to 72 GPa
journal, December 2019

  • Berryman, Eleanor J.; Winey, J. M.; Gupta, Yogendra M.
  • Geophysical Research Letters, Vol. 46, Issue 23
  • DOI: 10.1029/2019GL085301

Dynamic compression of an Fe–Cr–Ni alloy to 80 GPa
journal, November 1997

  • Duffy, Thomas S.; Ahrens, Thomas J.
  • Journal of Applied Physics, Vol. 82, Issue 9
  • DOI: 10.1063/1.366233

Optical Response of Soda-Lime Glass Shocked to 14 GPa
journal, March 2020


Extreme measurements with Photonic Doppler Velocimetry (PDV)
journal, May 2020

  • Dolan, D. H.
  • Review of Scientific Instruments, Vol. 91, Issue 5
  • DOI: 10.1063/5.0004363

Shock-induced melting of MgSiO 3 perovskite and implications for melts in Earth's lowermost mantle
journal, January 2004


Shock melting of cerium
journal, June 2010


Shock compression of aluminum single crystals to 70 GPa: Role of crystalline anisotropy
journal, October 2013

  • Choudhuri, D.; Gupta, Y. M.
  • Journal of Applied Physics, Vol. 114, Issue 15
  • DOI: 10.1063/1.4824825

What Determines the fcc-bcc Structural Transformation in Shock Compressed Noble Metals?
journal, June 2020


Thermodynamics of silicate liquids in the deep Earth
journal, February 2009

  • Stixrude, Lars; de Koker, Nico; Sun, Ni
  • Earth and Planetary Science Letters, Vol. 278, Issue 3-4
  • DOI: 10.1016/j.epsl.2008.12.006

Hugoniot equation of state of twelve rocks
journal, October 1967

  • McQueen, R. G.; Marsh, S. P.; Fritz, J. N.
  • Journal of Geophysical Research, Vol. 72, Issue 20
  • DOI: 10.1029/JZ072i020p04999

Femtosecond X‐Ray Diffraction of Laser‐Shocked Forsterite (Mg 2 SiO 4 ) to 122 GPa
journal, January 2021

  • Kim, Donghoon; Tracy, Sally J.; Smith, Raymond F.
  • Journal of Geophysical Research: Solid Earth, Vol. 126, Issue 1
  • DOI: 10.1029/2020JB020337

Radiation temperatures of soda-lime glass in its shock-compressed liquid state
journal, February 1998

  • Kobayashi, T.; Sekine, T.; Fat’yanov, O. V.
  • Journal of Applied Physics, Vol. 83, Issue 3
  • DOI: 10.1063/1.366889

Application of a Computational Glass Model to the Shock Response of Soda-Lime Glass
journal, April 2016

  • Gorfain, Joshua E.; Key, Christopher T.; Alexander, C. Scott
  • Journal of Dynamic Behavior of Materials, Vol. 2, Issue 3
  • DOI: 10.1007/s40870-016-0066-2

Melting of (Mg,Fe)2SiO4 at the Core-Mantle Boundary of the Earth
journal, March 1997


Direct Observation of Shock‐Induced Disordering of Enstatite Below the Melting Temperature
journal, August 2020

  • Hernandez, J. ‐A.; Morard, G.; Guarguaglini, M.
  • Geophysical Research Letters, Vol. 47, Issue 15
  • DOI: 10.1029/2020GL088887

Shock-compressed MgSiO 3 glass, enstatite, olivine, and quartz: Optical emission, temperatures, and melting : SHOCK TEMPERATURE AND MELTING OF SILICATES
journal, May 2004

  • Luo, Sheng-Nian; Akins, Joseph A.; Ahrens, Thomas J.
  • Journal of Geophysical Research: Solid Earth, Vol. 109, Issue B5
  • DOI: 10.1029/2003JB002860

Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility
journal, July 2014

  • Rigg, P. A.; Knudson, M. D.; Scharff, R. J.
  • Journal of Applied Physics, Vol. 116, Issue 3
  • DOI: 10.1063/1.4890714

Structural transformations including melting and recrystallization during shock compression and release of germanium up to 45 GPa
journal, April 2019


A new approach to the equation of state of silicate melts: An application of the theory of hard sphere mixtures
journal, November 2011