DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solvent and Temperature Effects on Photoinduced Proton-Coupled Electron Transfer in the Marcus Inverted Region

Abstract

Concerted proton-coupled electron transfer (PCET) in the Marcus inverted region was recently demonstrated. Understanding the requirements for such reactivity is fundamentally important and holds promise as a design principle for solar energy conversion systems. Herein, we investigate the solvent polarity and temperature dependence of photoinduced proton-coupled charge separation (CS) and charge recombination (CR) in anthracene–phenol–pyridine triads: 1 (10-(4-hydroxy-3-(4-methylpyridin-2-yl)benzyl)anthracene-9-carbonitrile) and 2 (10-(4-hydroxy-3-(4-methoxypyridin-2-yl)benzyl)anthracene-9-carbonitrile). Both the CS and CR rate constants increased with increasing polarity in acetonitrile:n-butyronitrile mixtures. The kinetics were semi-quantitatively analyzed where changes in dielectric and refractive index, and thus consequently changes in driving force (–ΔG°) and reorganization energy (λ), were accounted for. The results were further validated by fitting the temperature dependence, from 180 to 298 K, in n-butyronitrile. The analyses support previous computational work where transitions to proton vibrational excited states dominate the CR reaction with a distinct activation free energy (ΔG*CR ~ 140 meV). However, the solvent continuum model fails to accurately describe the changes in ΔG° and λ with temperature via changes in dielectric constant and refractive index. Satisfactory modeling was obtained using the results of a molecular solvent model, which predicts that λ decreases with temperature, opposite to that of the continuum model. To further assessmore » the solvent polarity control in the inverted region, the reactions were studied in toluene. Nonpolar solvents decrease both ΔG°CR and λ, slowing CR into the nanosecond time regime for 2 in toluene at 298 K. This demonstrates how PCET in the inverted region may be controlled to potentially use proton-coupled CS states for efficient solar fuel production and photoredox catalysis.« less

Authors:
 [1];  [2];  [3]; ORCiD logo [1]; ORCiD logo [2]
  1. Yale Univ., New Haven, CT (United States)
  2. Uppsala Univ. (Sweden). Ångström Lab.
  3. Yale Univ., New Haven, CT (United States); College of New New Jersey, Ewing, NJ (United States)
Publication Date:
Research Org.:
Yale Univ., New Haven, CT (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Institutes of Health (NIH); Swedish Research Council (SRC)
OSTI Identifier:
1817903
Grant/Contract Number:  
SC0021173; 2R01GM50422; 2020-05246
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 125; Journal Issue: 35; Related Information: The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpca.1c05764; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Hydrocarbons; Charge transfer; Mixtures; Aromatic compounds; Solvents

Citation Formats

Cotter, Laura F., Rimgard, Belinda Pettersson, Parada, Giovanny A., Mayer, James M., and Hammarström, Leif. Solvent and Temperature Effects on Photoinduced Proton-Coupled Electron Transfer in the Marcus Inverted Region. United States: N. p., 2021. Web. doi:10.1021/acs.jpca.1c05764.
Cotter, Laura F., Rimgard, Belinda Pettersson, Parada, Giovanny A., Mayer, James M., & Hammarström, Leif. Solvent and Temperature Effects on Photoinduced Proton-Coupled Electron Transfer in the Marcus Inverted Region. United States. https://doi.org/10.1021/acs.jpca.1c05764
Cotter, Laura F., Rimgard, Belinda Pettersson, Parada, Giovanny A., Mayer, James M., and Hammarström, Leif. Wed . "Solvent and Temperature Effects on Photoinduced Proton-Coupled Electron Transfer in the Marcus Inverted Region". United States. https://doi.org/10.1021/acs.jpca.1c05764. https://www.osti.gov/servlets/purl/1817903.
@article{osti_1817903,
title = {Solvent and Temperature Effects on Photoinduced Proton-Coupled Electron Transfer in the Marcus Inverted Region},
author = {Cotter, Laura F. and Rimgard, Belinda Pettersson and Parada, Giovanny A. and Mayer, James M. and Hammarström, Leif},
abstractNote = {Concerted proton-coupled electron transfer (PCET) in the Marcus inverted region was recently demonstrated. Understanding the requirements for such reactivity is fundamentally important and holds promise as a design principle for solar energy conversion systems. Herein, we investigate the solvent polarity and temperature dependence of photoinduced proton-coupled charge separation (CS) and charge recombination (CR) in anthracene–phenol–pyridine triads: 1 (10-(4-hydroxy-3-(4-methylpyridin-2-yl)benzyl)anthracene-9-carbonitrile) and 2 (10-(4-hydroxy-3-(4-methoxypyridin-2-yl)benzyl)anthracene-9-carbonitrile). Both the CS and CR rate constants increased with increasing polarity in acetonitrile:n-butyronitrile mixtures. The kinetics were semi-quantitatively analyzed where changes in dielectric and refractive index, and thus consequently changes in driving force (–ΔG°) and reorganization energy (λ), were accounted for. The results were further validated by fitting the temperature dependence, from 180 to 298 K, in n-butyronitrile. The analyses support previous computational work where transitions to proton vibrational excited states dominate the CR reaction with a distinct activation free energy (ΔG*CR ~ 140 meV). However, the solvent continuum model fails to accurately describe the changes in ΔG° and λ with temperature via changes in dielectric constant and refractive index. Satisfactory modeling was obtained using the results of a molecular solvent model, which predicts that λ decreases with temperature, opposite to that of the continuum model. To further assess the solvent polarity control in the inverted region, the reactions were studied in toluene. Nonpolar solvents decrease both ΔG°CR and λ, slowing CR into the nanosecond time regime for 2 in toluene at 298 K. This demonstrates how PCET in the inverted region may be controlled to potentially use proton-coupled CS states for efficient solar fuel production and photoredox catalysis.},
doi = {10.1021/acs.jpca.1c05764},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 35,
volume = 125,
place = {United States},
year = {Wed Aug 25 00:00:00 EDT 2021},
month = {Wed Aug 25 00:00:00 EDT 2021}
}

Works referenced in this record:

Intramolecular photochemical electron transfer. 6. Bridge and solvent dependence of electron transfer in covalently linked porphyrin-peptide-quinone compounds
journal, September 1991

  • Liu, Jing Yao; Schmidt, John A.; Bolton, James R.
  • The Journal of Physical Chemistry, Vol. 95, Issue 18
  • DOI: 10.1021/j100171a035

Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture)
journal, August 1993

  • Marcus, Rudolph A.
  • Angewandte Chemie International Edition in English, Vol. 32, Issue 8
  • DOI: 10.1002/anie.199311113

Glotaran : A Java -Based Graphical User Interface for the R Package TIMP
journal, January 2012

  • Snellenburg, Joris J.; Laptenok, Sergey P.; Seger, Ralf
  • Journal of Statistical Software, Vol. 49, Issue 3
  • DOI: 10.18637/jss.v049.i03

Temperature dependent activation energy for electron transfer between biological molecules
journal, June 1976

  • Jortner, Joshua
  • The Journal of Chemical Physics, Vol. 64, Issue 12
  • DOI: 10.1063/1.432142

On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I
journal, May 1956

  • Marcus, R. A.
  • The Journal of Chemical Physics, Vol. 24, Issue 5
  • DOI: 10.1063/1.1742723

Electron transfers in chemistry and biology
journal, August 1985

  • Marcus, R. A.; Sutin, Norman
  • Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, Vol. 811, Issue 3
  • DOI: 10.1016/0304-4173(85)90014-X

Temperature Dependence of Ultra-Exothermic Charge Recombinations
journal, October 2006

  • Serpa, Carlos; Gomes, Paulo J. S.; Arnaut, Luis G.
  • ChemPhysChem, Vol. 7, Issue 12
  • DOI: 10.1002/cphc.200600467

Concerted proton-electron transfer reactions in the Marcus inverted region
journal, April 2019

  • Parada, Giovanny A.; Goldsmith, Zachary K.; Kolmar, Scott
  • Science, Vol. 364, Issue 6439
  • DOI: 10.1126/science.aaw4675

A frequency-resolved cavity model (FRCM) for treating equilibrium and non-equilibrium solvation energies
journal, June 1998


Analysis of Kinetic Isotope Effects for Proton-Coupled Electron Transfer Reactions
journal, March 2009

  • Edwards, Sarah J.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
  • The Journal of Physical Chemistry A, Vol. 113, Issue 10
  • DOI: 10.1021/jp809122y

Femtosecond laser study of energy disposal in the solution phase isomerization of stilbene
journal, December 1990

  • Sension, R. J.; Repinec, S. T.; Hochstrasser, R. M.
  • The Journal of Chemical Physics, Vol. 93, Issue 12
  • DOI: 10.1063/1.459707

An overview of continuum models for nonequilibrium solvation: Popular theories and new challenge
journal, April 2015

  • Li, Xiang-Yuan
  • International Journal of Quantum Chemistry, Vol. 115, Issue 11
  • DOI: 10.1002/qua.24901

Higher activation barriers can lift exothermic rate restrictions in electron transfer and enable faster reactions
journal, July 2018


Quantum effects for electron-transfer reactions in the "inverted region"
journal, February 1981

  • Siders, P.; Marcus, R. A.
  • Journal of the American Chemical Society, Vol. 103, Issue 4
  • DOI: 10.1021/ja00394a004

Temperature effects on intramolecular electron transfer kinetics under "normal", "inverted", and "nearly optimal" conditions
journal, May 1993

  • Kroon, Jan; Oevering, Henk; Verhoeven, Jan W.
  • The Journal of Physical Chemistry, Vol. 97, Issue 19
  • DOI: 10.1021/j100121a036

Isolating the Effects of the Proton Tunneling Distance on Proton-Coupled Electron Transfer in a Series of Homologous Tyrosine-Base Model Compounds
journal, January 2017

  • Glover, Starla D.; Parada, Giovanny A.; Markle, Todd F.
  • Journal of the American Chemical Society, Vol. 139, Issue 5
  • DOI: 10.1021/jacs.6b12531

Proton-Coupled Electron Transfer in Biology: Results from Synergistic Studies in Natural and Model Systems
journal, June 2009


Influence of specific reactant-solvent interactions on intrinsic activation entropies for outer-sphere electron-transfer reactions
journal, April 1984

  • Hupp, Joseph T.; Weaver, Michael J.
  • The Journal of Physical Chemistry, Vol. 88, Issue 9
  • DOI: 10.1021/j150653a038

Theoretical relations among rate constants, barriers, and Broensted slopes of chemical reactions
journal, March 1968

  • Marcus, Rudolph A.
  • The Journal of Physical Chemistry, Vol. 72, Issue 3
  • DOI: 10.1021/j100849a019

Proton-Coupled Electron Transfer
journal, November 2007

  • Huynh, My Hang V.; Meyer, Thomas J.
  • Chemical Reviews, Vol. 107, Issue 11
  • DOI: 10.1021/cr0500030

Proton-Coupled Electron Transfer: Moving Together and Charging Forward
journal, July 2015

  • Hammes-Schiffer, Sharon
  • Journal of the American Chemical Society, Vol. 137, Issue 28
  • DOI: 10.1021/jacs.5b04087

Extended Hydrogen Bond Networks for Effective Proton-Coupled Electron Transfer (PCET) Reactions: The Unexpected Role of Thiophenol and Its Acidic Channel in Photocatalytic Hydroamidations
journal, January 2021

  • Berg, Nele; Bergwinkl, Sebastian; Nuernberger, Patrick
  • Journal of the American Chemical Society, Vol. 143, Issue 2
  • DOI: 10.1021/jacs.0c08673

Propyl acetate/butyronitrile mixture is ideally suited for investigating the effect of dielectric stabilization on (photo)chemical reactions
journal, January 2020

  • Verma, Pragya; Rosspeintner, Arnulf; Kumpulainen, Tatu
  • RSC Advances, Vol. 10, Issue 40
  • DOI: 10.1039/D0RA04525J

Curve Crossing Formulation for Proton Transfer Reactions in Solution
journal, January 1996

  • Borgis, Daniel; Hynes, James T.
  • The Journal of Physical Chemistry, Vol. 100, Issue 4
  • DOI: 10.1021/jp9522324

Inverted-region electron transfer as a mechanism for enhancing photosynthetic solar energy conversion efficiency
journal, August 2017

  • Makita, Hiroki; Hastings, Gary
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 35
  • DOI: 10.1073/pnas.1704855114

Multistate continuum theory for multiple charge transfer reactions in solution
journal, September 1999

  • Soudackov, Alexander; Hammes-Schiffer, Sharon
  • The Journal of Chemical Physics, Vol. 111, Issue 10
  • DOI: 10.1063/1.479229

The Theory of Electron Transfer Reactions:  What May Be Missing?
journal, June 2003

  • Small, David W.; Matyushov, Dmitry V.; Voth, Gregory A.
  • Journal of the American Chemical Society, Vol. 125, Issue 24
  • DOI: 10.1021/ja029595j

Theory of Coupled Electron and Proton Transfer Reactions
journal, December 2010

  • Hammes-Schiffer, Sharon; Stuchebrukhov, Alexei A.
  • Chemical Reviews, Vol. 110, Issue 12
  • DOI: 10.1021/cr1001436

Intramolecular photochemical electron transfer. Part 5.—Solvent dependence of electron transfer in a porphyrin–amide–quinone molecule
journal, January 1989

  • Schmidt, John A.; Liu, Jing-Yao; Bolton, James R.
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 85, Issue 5
  • DOI: 10.1039/F19898501027

Activationless Multiple-Site Concerted Proton–Electron Tunneling
journal, May 2018

  • Bowring, Miriam A.; Bradshaw, Liam R.; Parada, Giovanny A.
  • Journal of the American Chemical Society, Vol. 140, Issue 24
  • DOI: 10.1021/jacs.8b04455

Radical Pair and Triplet State Dynamics of a Photosynthetic Reaction-Center Model Embedded in Isotropic Media and Liquid Crystals
journal, January 1996

  • Hasharoni, Kobi; Levanon, Haim; Greenfield, Scott R.
  • Journal of the American Chemical Society, Vol. 118, Issue 42
  • DOI: 10.1021/ja961919e

Ultrafast charge transfer in excited electronic states and investigations into fundamental problems of exciplex chemistry: Our early studies and recent developments
journal, April 2005


Factors governing the efficiency of singlet oxygen production during oxygen quenching of singlet and triplet states of anthracene derivatives in cyclohexane solution
journal, December 1993

  • Wilkinson, F.; McGarvey, D. J.; Olea, A. F.
  • Journal of the American Chemical Society, Vol. 115, Issue 25
  • DOI: 10.1021/ja00078a062

Multiple-Site Concerted Proton–Electron Transfer Reactions of Hydrogen-Bonded Phenols Are Nonadiabatic and Well Described by Semiclassical Marcus Theory
journal, September 2012

  • Schrauben, Joel N.; Cattaneo, Mauricio; Day, Thomas C.
  • Journal of the American Chemical Society, Vol. 134, Issue 40
  • DOI: 10.1021/ja305668h

TIMP : An R Package for Modeling Multi-Way Spectroscopic Measurements
journal, January 2007

  • Mullen, Katharine M.; Stokkum, Ivo H. M. van
  • Journal of Statistical Software, Vol. 18, Issue 3
  • DOI: 10.18637/jss.v018.i03

Proton-Coupled Electron Transfer in Artificial Photosynthetic Systems
journal, January 2018


Electron transfer in nonpolar media
journal, January 2020

  • Matyushov, Dmitry V.
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 19
  • DOI: 10.1039/c9cp06166e

The Role of Free Energy Change in Coupled Electron−Proton Transfer
journal, December 2007

  • Fecenko, Christine J.; Thorp, H. Holden; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 129, Issue 49
  • DOI: 10.1021/ja072558d

Dependence of rate constants for photoinduced charge separation and dark charge recombination on the free energy of reaction in restricted-distance porphyrin-quinone molecules
journal, February 1985

  • Wasielewski, Michael R.; Niemczyk, Mark P.; Svec, Walter A.
  • Journal of the American Chemical Society, Vol. 107, Issue 4
  • DOI: 10.1021/ja00290a066

Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications
journal, December 2010

  • Warren, Jeffrey J.; Tronic, Tristan A.; Mayer, James M.
  • Chemical Reviews, Vol. 110, Issue 12
  • DOI: 10.1021/cr100085k

Electron donor/acceptor interaction and reorganization parameters from temperature-dependent intramolecular electron-transfer rates
journal, November 1988

  • Finckh, P.; Heitele, H.; Volk, M.
  • The Journal of Physical Chemistry, Vol. 92, Issue 23
  • DOI: 10.1021/j100334a022

A survey of ligand effects upon the reaction entropies of some transition metal redox couples
journal, February 1979

  • Yee, Edmund L.; Cave, Robert J.; Guyer, Kendall L.
  • Journal of the American Chemical Society, Vol. 101, Issue 5
  • DOI: 10.1021/ja00499a013

Mimicry of the Radical Pair and Triplet States in Photosynthetic Reaction Centers with a Synthetic Model
journal, August 1995

  • Hasharoni, Kobi; Levanon, Haim; Greenfield, Scott R.
  • Journal of the American Chemical Society, Vol. 117, Issue 30
  • DOI: 10.1021/ja00135a040

Theoretical analysis of the inverted region in photoinduced proton-coupled electron transfer
journal, January 2019

  • Goldsmith, Zachary K.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
  • Faraday Discussions, Vol. 216
  • DOI: 10.1039/c8fd00240a

Tuning the stability of electrochemical interfaces by electron transfer reactions
journal, May 2020

  • Fraggedakis, Dimitrios; Bazant, Martin Z.
  • The Journal of Chemical Physics, Vol. 152, Issue 18
  • DOI: 10.1063/5.0006833

Kinetic Isotope Effects for Nonadiabatic Proton Transfer Reactions in a Polar Environment. 1. Interpretation of Tunneling Kinetic Isotopic Effects
journal, December 2004

  • Kiefer, Philip M.; Hynes, James T.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 52
  • DOI: 10.1021/jp040497p

Proton-Coupled Electron Transfer with Photoexcited Metal Complexes
journal, February 2013

  • Wenger, Oliver S.
  • Accounts of Chemical Research, Vol. 46, Issue 7
  • DOI: 10.1021/ar300289x

Continuum level treatment of electronic polarization in the framework of molecular simulations of solvation effects
journal, October 2003

  • Leontyev, I. V.; Vener, M. V.; Rostov, I. V.
  • The Journal of Chemical Physics, Vol. 119, Issue 15
  • DOI: 10.1063/1.1605944

Making a Molecular Wire:  Charge and Spin Transport through p ara -Phenylene Oligomers
journal, May 2004

  • Weiss, Emily A.; Ahrens, Michael J.; Sinks, Louise E.
  • Journal of the American Chemical Society, Vol. 126, Issue 17
  • DOI: 10.1021/ja0398215

Charge recombination kinetics of giant dipoles in saturated hydrocarbon solvents
journal, November 1988


A Spectroscopic Study of Solvent Reorganization Energy:  Dependence on Temperature, Charge Transfer Distance, and the Type of Solute−Solvent Interactions
journal, March 2000

  • Vath, Peter; Zimmt, Matthew B.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 12
  • DOI: 10.1021/jp993667k

Biochemistry and Theory of Proton-Coupled Electron Transfer
journal, January 2014

  • Migliore, Agostino; Polizzi, Nicholas F.; Therien, Michael J.
  • Chemical Reviews, Vol. 114, Issue 7
  • DOI: 10.1021/cr4006654

Theoretical and mechanistic aspects of proton-coupled electron transfer in electrochemistry
journal, February 2017


Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates
journal, May 1984

  • Miller, J. R.; Calcaterra, L. T.; Closs, G. L.
  • Journal of the American Chemical Society, Vol. 106, Issue 10
  • DOI: 10.1021/ja00322a058

A Failure of Continuum Theory:  Temperature Dependence of the Solvent Reorganization Energy of Electron Transfer in Highly Polar Solvents
journal, October 1999

  • Vath, Peter; Zimmt, Matthew B.; Matyushov, Dmitry V.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 43
  • DOI: 10.1021/jp990494q

Solvent reorganization in optical and thermal electron-transfer processes
journal, July 1986

  • Brunschwig, Bruce S.; Ehrenson, Stanton; Sutin, Norman
  • The Journal of Physical Chemistry, Vol. 90, Issue 16
  • DOI: 10.1021/j100407a037

Temperature Dependence of the Rate of Intramolecular Electron Transfer
journal, September 2018


Excited-State Proton-Coupled Electron Transfer: Different Avenues for Promoting Proton/Electron Movement with Solar Photons
journal, April 2017


The mechanism of the proton transfer: an outline
journal, May 2000


Theory of Proton-Coupled Electron Transfer in Energy Conversion Processes
journal, December 2009

  • Hammes-Schiffer, Sharon
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar9001284

Theory of homogeneous reactions involving proton transfer
journal, February 1970


Proton-Coupled Electron Transfer Guidelines, Fair and Square
journal, January 2021

  • Tyburski, Robin; Liu, Tianfei; Glover, Starla D.
  • Journal of the American Chemical Society, Vol. 143, Issue 2
  • DOI: 10.1021/jacs.0c09106

Substituent Effects on Photochemistry of Anthracene–Phenol–Pyridine Triads Revealed by Multireference Calculations
journal, December 2019

  • Sayfutyarova, Elvira R.; Hammes-Schiffer, Sharon
  • Journal of the American Chemical Society, Vol. 142, Issue 1
  • DOI: 10.1021/jacs.9b11425

Derivation of rate expressions for nonadiabatic proton-coupled electron transfer reactions in solution
journal, August 2000

  • Soudackov, Alexander; Hammes-Schiffer, Sharon
  • The Journal of Chemical Physics, Vol. 113, Issue 6
  • DOI: 10.1063/1.482053

A connection between intramolecular long-range electron, hole, and triplet energy transfers
journal, May 1989

  • Closs, Gerhard L.; Johnson, Mark D.; Miller, John R.
  • Journal of the American Chemical Society, Vol. 111, Issue 10
  • DOI: 10.1021/ja00192a044

Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited
journal, November 1995

  • Horng, M. L.; Gardecki, J. A.; Papazyan, A.
  • The Journal of Physical Chemistry, Vol. 99, Issue 48
  • DOI: 10.1021/j100048a004

Magnetic field effect on ion pair dynamics upon bimolecular photoinduced electron transfer in solution
journal, January 2019

  • Feskov, Serguei V.; Rogozina, Marina V.; Ivanov, Anatoly I.
  • The Journal of Chemical Physics, Vol. 150, Issue 2
  • DOI: 10.1063/1.5064802

Solvent, ligand, and ionic charge effects on reaction entropies for simple transition-metal redox couples
journal, October 1984

  • Hupp, Joseph T.; Weaver, Michael J.
  • Inorganic Chemistry, Vol. 23, Issue 22
  • DOI: 10.1021/ic00190a042

Theory and computation of electron transfer reorganization energies with continuum and molecular solvent models
journal, January 2004

  • Leontyev, I. V.; Basilevsky, M. V.; Newton, M. D.
  • Theoretical Chemistry Accounts, Vol. 111, Issue 2-6
  • DOI: 10.1007/s00214-003-0546-z

Temperature-independent long-range electron transfer reactions in the Marcus inverted region
journal, June 1990

  • Liang, Nong; Miller, John R.; Closs, Gerhard L.
  • Journal of the American Chemical Society, Vol. 112, Issue 13
  • DOI: 10.1021/ja00169a054

Kinetic Effects of Increased Proton Transfer Distance on Proton-Coupled Oxidations of Phenol-Amines
journal, November 2011

  • Markle, Todd F.; Rhile, Ian J.; Mayer, James M.
  • Journal of the American Chemical Society, Vol. 133, Issue 43
  • DOI: 10.1021/ja2056853