DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Engineering the Interlayer Spacing by Pre-Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid

Abstract

MXenes exhibit excellent capacitance at high scan rates in sulfuric acid aqueous electrolytes, but the narrow potential window of aqueous electrolytes limits the energy density. Organic electrolytes and room-temperature ionic liquids (RTILs) can provide higher potential windows, leading to higher energy density. The large cation size of RTIL hinders its intercalation in-between the layers of MXene limiting the specific capacitance in comparison to aqueous electrolytes. In this work, different chain lengths alkylammonium (AA) cations are intercalated into Ti3C2Tx, producing variation of MXene interlayer spacings (d-spacing). AA-cation-intercalated Ti3C2Tx (AA-Ti3C2), exhibits higher specific capacitances, and cycling stabilities than pristine Ti3C2Tx in 1 m 1-ethly-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMIMTFSI) in acetonitrile and neat EMIMTFSI RTIL electrolytes. Pre-intercalated MXene with an interlayer spacing of ≈2.2 nm, can deliver a large specific capacitance of 257 F g–1 (1428 mF cm–2 and 492 F cm–3) in neat EMIMTFSI electrolyte leading to high energy density. Quasi elastic neutron scattering and electrochemical impedance spectroscopy are used to study the dynamics of confined RTIL in pre-intercalated MXene. Furthermore, molecular dynamics simulations suggest significant differences in the structures of RTIL ions and AA cations inside the Ti3C2Tx interlayer, providing insights into the differences in the observed electrochemical behavior.

Authors:
ORCiD logo [1];  [2];  [2]; ORCiD logo [3]; ORCiD logo [3];  [4];  [5]; ORCiD logo [3];  [1];  [6]; ORCiD logo [3];  [5]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [4];  [2]; ORCiD logo [1]
  1. Tulane Univ., New Orleans, LA (United States)
  2. Vanderbilt Univ., Nashville, TN (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
  5. North Carolina State Univ., Raleigh, NC (United States)
  6. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Univ. of Maryland, College Park, MD (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1817386
Alternate Identifier(s):
OSTI ID: 1797598
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 31; Journal Issue: 33; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Liang, Kun, Matsumoto, Ray A., Zhao, Wei, Osti, Naresh C., Popov, Ivan, Thapaliya, Bishnu P., Fleischmann, Simon, Misra, Sudhajit, Prenger, Kaitlyn, Tyagi, Madhusudan, Mamontov, Eugene, Augustyn, Veronica, Unocic, Raymond R., Sokolov, Alexei P., Dai, Sheng, Cummings, Peter T., and Naguib, Michael. Engineering the Interlayer Spacing by Pre-Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid. United States: N. p., 2021. Web. doi:10.1002/adfm.202104007.
Liang, Kun, Matsumoto, Ray A., Zhao, Wei, Osti, Naresh C., Popov, Ivan, Thapaliya, Bishnu P., Fleischmann, Simon, Misra, Sudhajit, Prenger, Kaitlyn, Tyagi, Madhusudan, Mamontov, Eugene, Augustyn, Veronica, Unocic, Raymond R., Sokolov, Alexei P., Dai, Sheng, Cummings, Peter T., & Naguib, Michael. Engineering the Interlayer Spacing by Pre-Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid. United States. https://doi.org/10.1002/adfm.202104007
Liang, Kun, Matsumoto, Ray A., Zhao, Wei, Osti, Naresh C., Popov, Ivan, Thapaliya, Bishnu P., Fleischmann, Simon, Misra, Sudhajit, Prenger, Kaitlyn, Tyagi, Madhusudan, Mamontov, Eugene, Augustyn, Veronica, Unocic, Raymond R., Sokolov, Alexei P., Dai, Sheng, Cummings, Peter T., and Naguib, Michael. Fri . "Engineering the Interlayer Spacing by Pre-Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid". United States. https://doi.org/10.1002/adfm.202104007. https://www.osti.gov/servlets/purl/1817386.
@article{osti_1817386,
title = {Engineering the Interlayer Spacing by Pre-Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid},
author = {Liang, Kun and Matsumoto, Ray A. and Zhao, Wei and Osti, Naresh C. and Popov, Ivan and Thapaliya, Bishnu P. and Fleischmann, Simon and Misra, Sudhajit and Prenger, Kaitlyn and Tyagi, Madhusudan and Mamontov, Eugene and Augustyn, Veronica and Unocic, Raymond R. and Sokolov, Alexei P. and Dai, Sheng and Cummings, Peter T. and Naguib, Michael},
abstractNote = {MXenes exhibit excellent capacitance at high scan rates in sulfuric acid aqueous electrolytes, but the narrow potential window of aqueous electrolytes limits the energy density. Organic electrolytes and room-temperature ionic liquids (RTILs) can provide higher potential windows, leading to higher energy density. The large cation size of RTIL hinders its intercalation in-between the layers of MXene limiting the specific capacitance in comparison to aqueous electrolytes. In this work, different chain lengths alkylammonium (AA) cations are intercalated into Ti3C2Tx, producing variation of MXene interlayer spacings (d-spacing). AA-cation-intercalated Ti3C2Tx (AA-Ti3C2), exhibits higher specific capacitances, and cycling stabilities than pristine Ti3C2Tx in 1 m 1-ethly-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMIMTFSI) in acetonitrile and neat EMIMTFSI RTIL electrolytes. Pre-intercalated MXene with an interlayer spacing of ≈2.2 nm, can deliver a large specific capacitance of 257 F g–1 (1428 mF cm–2 and 492 F cm–3) in neat EMIMTFSI electrolyte leading to high energy density. Quasi elastic neutron scattering and electrochemical impedance spectroscopy are used to study the dynamics of confined RTIL in pre-intercalated MXene. Furthermore, molecular dynamics simulations suggest significant differences in the structures of RTIL ions and AA cations inside the Ti3C2Tx interlayer, providing insights into the differences in the observed electrochemical behavior.},
doi = {10.1002/adfm.202104007},
journal = {Advanced Functional Materials},
number = 33,
volume = 31,
place = {United States},
year = {2021},
month = {6}
}

Works referenced in this record:

Influences from solvents on charge storage in titanium carbide MXenes
journal, March 2019


High-Performance Supercapacitors Based on Poly(ionic liquid)-Modified Graphene Electrodes
journal, December 2010

  • Kim, Tae Young; Lee, Hyun Wook; Stoller, Meryl
  • ACS Nano, Vol. 5, Issue 1, p. 436-442
  • DOI: 10.1021/nn101968p

Pseudocapacitive oxide materials for high-rate electrochemical energy storage
journal, January 2014

  • Augustyn, Veronica; Simon, Patrice; Dunn, Bruce
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c3ee44164d

Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes
journal, October 2017


Electrochemical and in-situ X-ray diffraction studies of Ti 3 C 2 T x MXene in ionic liquid electrolyte
journal, November 2016


Intercalation and delamination of layered carbides and carbonitrides
journal, April 2013

  • Mashtalir, Olha; Naguib, Michael; Mochalin, Vadym N.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2664

Boosting the power performance of multilayer graphene as lithium-ion battery anode via unconventional doping with in-situ formed Fe nanoparticles
journal, March 2016

  • Raccichini, Rinaldo; Varzi, Alberto; Chakravadhanula, Venkata Sai Kiran
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep23585

On the Correlation between Mechanical Flexibility, Nanoscale Structure, and Charge Storage in Periodic Mesoporous CeO 2 Thin Films
journal, January 2010

  • Brezesinski, Torsten; Wang, John; Senter, Robert
  • ACS Nano, Vol. 4, Issue 2
  • DOI: 10.1021/nn9007324

Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide
journal, September 2013


Alkylammonium Cation Intercalation into Ti 3 C 2 (MXene): Effects on Properties and Ion-Exchange Capacity Estimation
journal, January 2017


Two-Dimensional Transition Metal Carbides
journal, January 2012

  • Naguib, Michael; Mashtalir, Olha; Carle, Joshua
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204153h

MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors
journal, June 2018


Humidity Exposure Enhances Microscopic Mobility in a Room-Temperature Ionic Liquid in MXene
journal, November 2018

  • Osti, Naresh C.; Thompson, Matthew W.; Van Aken, Katherine L.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 48
  • DOI: 10.1021/acs.jpcc.8b09677

Acetonitrile Boosts Conductivity of Imidazolium Ionic Liquids
journal, June 2012

  • Chaban, Vitaly V.; Voroshylova, Iuliia V.; Kalugin, Oleg N.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 26
  • DOI: 10.1021/jp3034825

Where Do Batteries End and Supercapacitors Begin?
journal, March 2014


Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential
journal, October 2016

  • Mahurin, Shannon M.; Mamontov, Eugene; Thompson, Matthew W.
  • Applied Physics Letters, Vol. 109, Issue 14
  • DOI: 10.1063/1.4964130

Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores
journal, September 2017

  • Futamura, Ryusuke; Iiyama, Taku; Takasaki, Yuma
  • Nature Materials, Vol. 16, Issue 12
  • DOI: 10.1038/nmat4974

Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte
journal, September 2016


Gabedit-A graphical user interface for computational chemistry softwares
journal, November 2010

  • Allouche, Abdul-Rahman
  • Journal of Computational Chemistry, Vol. 32, Issue 1
  • DOI: 10.1002/jcc.21600

High Energy Density Supercapacitor Based on a Hybrid Carbon Nanotube-Reduced Graphite Oxide Architecture
journal, February 2012

  • Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena
  • Advanced Energy Materials, Vol. 2, Issue 4
  • DOI: 10.1002/aenm.201100697

Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance
journal, November 2014

  • Ghidiu, Michael; Lukatskaya, Maria R.; Zhao, Meng-Qiang
  • Nature, Vol. 516, Issue 7529
  • DOI: 10.1038/nature13970

Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes
journal, February 2016


Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage
journal, December 2020


Tailoring the pore structure of carbon nanofibers for achieving ultrahigh-energy-density supercapacitors using ionic liquids as electrolytes
journal, January 2016

  • Kim, Chang Hyo; Wee, Jae-Hyung; Kim, Yoong Ahm
  • Journal of Materials Chemistry A, Vol. 4, Issue 13
  • DOI: 10.1039/C5TA10500E

Toward the Experimental Understanding of the Energy Storage Mechanism and Ion Dynamics in Ionic Liquid Based Supercapacitors
journal, March 2018

  • Yan, Runyu; Antonietti, Markus; Oschatz, Martin
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201800026

MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories
journal, October 2015

  • McGibbon, Robert T.; Beauchamp, Kyle A.; Harrigan, Matthew P.
  • Biophysical Journal, Vol. 109, Issue 8
  • DOI: 10.1016/j.bpj.2015.08.015

Ionic Liquid-Based Electrolytes for Supercapacitor and Supercapattery
journal, April 2019


Graphene-Based Supercapacitor with an Ultrahigh Energy Density
journal, December 2010

  • Liu, Chenguang; Yu, Zhenning; Neff, David
  • Nano Letters, Vol. 10, Issue 12
  • DOI: 10.1021/nl102661q

Improved synthesis of Ti 3 C 2 T x MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance
journal, January 2021

  • Shayesteh Zeraati, Ali; Mirkhani, Seyyed Alireza; Sun, Pengcheng
  • Nanoscale, Vol. 13, Issue 6
  • DOI: 10.1039/D0NR06671K

Molecular Layering of Fluorinated Ionic Liquids at a Charged Sapphire (0001) Surface
journal, October 2008


Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy
journal, May 2013

  • Wang, Huanlei; Xu, Zhanwei; Kohandehghan, Alireza
  • ACS Nano, Vol. 7, Issue 6, p. 5131-5141
  • DOI: 10.1021/nn400731g

Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors
journal, November 2016

  • Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre
  • Nature Materials, Vol. 16, Issue 4
  • DOI: 10.1038/nmat4808

Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80°C
journal, May 2013


Multimodality of Structural, Electrical, and Gravimetric Responses of Intercalated MXenes to Water
journal, September 2017


Perspectives for electrochemical capacitors and related devices
journal, August 2020


Porous g‐C 3 N 4 and MXene Dual‐Confined FeOOH Quantum Dots for Superior Energy Storage in an Ionic Liquid
journal, November 2019


Carbon-based materials as supercapacitor electrodes
journal, January 2009

  • Zhang, Li Li; Zhao, X. S.
  • Chemical Society Reviews, Vol. 38, Issue 9
  • DOI: 10.1039/b813846j

Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2
journal, August 2011

  • Naguib, Michael; Kurtoglu, Murat; Presser, Volker
  • Advanced Materials, Vol. 23, Issue 37, p. 4248-4253
  • DOI: 10.1002/adma.201102306

Ionic liquids and derived materials for lithium and sodium batteries
journal, January 2018

  • Yang, Qiwei; Zhang, Zhaoqiang; Sun, Xiao-Guang
  • Chemical Society Reviews, Vol. 47, Issue 6
  • DOI: 10.1039/C7CS00464H

Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis
journal, August 1999

  • Welton, Thomas
  • Chemical Reviews, Vol. 99, Issue 8, p. 2071-2084
  • DOI: 10.1021/cr980032t

3D interpenetrating assembly of partially oxidized MXene confined Mn–Fe bimetallic oxide for superior energy storage in ionic liquid
journal, February 2020


Holey graphene frameworks for highly efficient capacitive energy storage
journal, August 2014

  • Xu, Yuxi; Lin, Zhaoyang; Zhong, Xing
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5554

Molecular Force Field for Ionic Liquids III:  Imidazolium, Pyridinium, and Phosphonium Cations; Chloride, Bromide, and Dicyanamide Anions
journal, October 2006

  • Canongia Lopes, José N.; Pádua, Agílio A. H.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 39
  • DOI: 10.1021/jp063901o

Carbon-Based Supercapacitors Produced by Activation of Graphene
journal, May 2011


Microscopic dynamics in room-temperature ionic liquids confined in materials for supercapacitor applications
journal, January 2020

  • Osti, Naresh C.; Mamontov, Eugene
  • Sustainable Energy & Fuels, Vol. 4, Issue 4
  • DOI: 10.1039/C9SE00829B

Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles
journal, October 2007

  • Wang, John; Polleux, Julien; Lim, James
  • The Journal of Physical Chemistry C, Vol. 111, Issue 40, p. 14925-14931
  • DOI: 10.1021/jp074464w

Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance
journal, June 2016

  • Chao, Dongliang; Zhu, Changrong; Yang, Peihua
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12122

Molecular Investigation of Oxidized Graphene: Anatomy of the Double-Layer Structure and Ion Dynamics
journal, April 2019

  • Zhang, Yu; Dyatkin, Boris; Cummings, Peter T.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 20
  • DOI: 10.1021/acs.jpcc.9b01617

Phenylacetonitrile (C6H5CH2CN) Ionic Liquid Blends as Alternative Electrolytes for Safe and High-Performance Supercapacitors
journal, June 2020


Multidimensional materials and device architectures for future hybrid energy storage
journal, September 2016

  • Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12647

Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density
journal, January 2019

  • Zheng, Shuanghao; Zhang, Chuanfang (John); Zhou, Feng
  • Journal of Materials Chemistry A, Vol. 7, Issue 16
  • DOI: 10.1039/C9TA02190F

Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides
journal, July 2017


2D metal carbides and nitrides (MXenes) for energy storage
journal, January 2017


CHEMISTRY: Ionic Liquids--Solvents of the Future?
journal, October 2003


Ion-Exchange and Cation Solvation Reactions in Ti 3 C 2 MXene
journal, May 2016


Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite
journal, November 2013

  • Black, Jennifer M.; Walters, Deron; Labuda, Aleksander
  • Nano Letters, Vol. 13, Issue 12, p. 5954-5960
  • DOI: 10.1021/nl4031083

Latest advances in supercapacitors: from new electrode materials to novel device designs
journal, January 2017

  • Wang, Faxing; Wu, Xiongwei; Yuan, Xinhai
  • Chemical Society Reviews, Vol. 46, Issue 22
  • DOI: 10.1039/C7CS00205J

Effect of Metal Ion Intercalation on the Structure of MXene and Water Dynamics on its Internal Surfaces
journal, March 2016

  • Osti, Naresh C.; Naguib, Michael; Ostadhossein, Alireza
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 14
  • DOI: 10.1021/acsami.6b01490