DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways

Abstract

Despite progress in small scale electrocatalytic production of hydrogen peroxide (H2O2) using a rotating ring-disk electrode, further work is needed to develop a non-toxic, selective, and stable O2-to-H2O2 electrocatalyst for realizing continuous on-site production of neutral hydrogen peroxide. We report ultrasmall and monodisperse colloidal PtP2 nanocrystals that achieve H2O2 production at near zero-overpotential with near unity H2O2 selectivity at 0.27 V vs. RHE. Density functional theory calculations indicate that P promotes hydrogenation of OOH* to H2O2 by weakening the Pt-OOH* bond and suppressing the dissociative OOH* to O* pathway. Atomic layer deposition of Al2O3 prevents NC aggregation and enables application in a polymer electrolyte membrane fuel cell (PEMFC) with a maximum r(H2O2) of 2.26 mmol h-1 cm-2 and a current efficiency of 78.8% even at a high current density of 150 mA cm-2. Catalyst stability enables an accumulated neutral H2O2 concentration in 600 mL of 3.0 wt% (pH = 6.6).

Authors:
 [1];  [2];  [1];  [3]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [5];  [6];  [5];  [2]; ORCiD logo [1]
  1. Wake Forest Univ., Winston-Salem, NC (United States). Dept. of Chemistry
  2. Harbin Inst. of Technology, Shenzhen (China). School of Materials Science and Engineering, Shenzhen Engineering Lab of Flexible Transparent Conductive Film
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
  5. Wake Forest Univ., Winston-Salem, NC (United States). Center for Nanotechnology and Molecular Materials and Dept. of Physics
  6. Soochow Univ., Suzhou, Jiangsu (China). Inst. of Functional Nano and Soft Materials (FUNSOM)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation of Guangdong Province; Shenzhen Bureau of Science, Technology and Innovation Commission
OSTI Identifier:
1815618
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 11; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Catalyst synthesis; Electrocatalysis; Energy

Citation Formats

Li, Hui, Wen, Peng, Itanze, Dominique S., Hood, Zachary D., Adhikari, Shiba, Lu, Chang, Ma, Xiao, Dun, Chaochao, Jiang, Lin, Carroll, David L., Qiu, Yejun, and Geyer, Scott M. Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. United States: N. p., 2020. Web. doi:10.1038/s41467-020-17584-9.
Li, Hui, Wen, Peng, Itanze, Dominique S., Hood, Zachary D., Adhikari, Shiba, Lu, Chang, Ma, Xiao, Dun, Chaochao, Jiang, Lin, Carroll, David L., Qiu, Yejun, & Geyer, Scott M. Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. United States. https://doi.org/10.1038/s41467-020-17584-9
Li, Hui, Wen, Peng, Itanze, Dominique S., Hood, Zachary D., Adhikari, Shiba, Lu, Chang, Ma, Xiao, Dun, Chaochao, Jiang, Lin, Carroll, David L., Qiu, Yejun, and Geyer, Scott M. Thu . "Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways". United States. https://doi.org/10.1038/s41467-020-17584-9. https://www.osti.gov/servlets/purl/1815618.
@article{osti_1815618,
title = {Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways},
author = {Li, Hui and Wen, Peng and Itanze, Dominique S. and Hood, Zachary D. and Adhikari, Shiba and Lu, Chang and Ma, Xiao and Dun, Chaochao and Jiang, Lin and Carroll, David L. and Qiu, Yejun and Geyer, Scott M.},
abstractNote = {Despite progress in small scale electrocatalytic production of hydrogen peroxide (H2O2) using a rotating ring-disk electrode, further work is needed to develop a non-toxic, selective, and stable O2-to-H2O2 electrocatalyst for realizing continuous on-site production of neutral hydrogen peroxide. We report ultrasmall and monodisperse colloidal PtP2 nanocrystals that achieve H2O2 production at near zero-overpotential with near unity H2O2 selectivity at 0.27 V vs. RHE. Density functional theory calculations indicate that P promotes hydrogenation of OOH* to H2O2 by weakening the Pt-OOH* bond and suppressing the dissociative OOH* to O* pathway. Atomic layer deposition of Al2O3 prevents NC aggregation and enables application in a polymer electrolyte membrane fuel cell (PEMFC) with a maximum r(H2O2) of 2.26 mmol h-1 cm-2 and a current efficiency of 78.8% even at a high current density of 150 mA cm-2. Catalyst stability enables an accumulated neutral H2O2 concentration in 600 mL of 3.0 wt% (pH = 6.6).},
doi = {10.1038/s41467-020-17584-9},
journal = {Nature Communications},
number = 1,
volume = 11,
place = {United States},
year = {Thu Aug 06 00:00:00 EDT 2020},
month = {Thu Aug 06 00:00:00 EDT 2020}
}

Works referenced in this record:

Electrocatalytic Production of H 2 O 2 by Selective Oxygen Reduction Using Earth-Abundant Cobalt Pyrite (CoS 2 )
journal, August 2019


Enabling direct H2O2 production through rational electrocatalyst design
journal, November 2013

  • Siahrostami, Samira; Verdaguer-Casadevall, Arnau; Karamad, Mohammadreza
  • Nature Materials, Vol. 12, Issue 12
  • DOI: 10.1038/nmat3795

Surface Restructuring of Nickel Sulfide Generates Optimally Coordinated Active Sites for Oxygen Reduction Catalysis
journal, November 2017


Surface-Protected Etching of Mesoporous Oxide Shells for the Stabilization of Metal Nanocatalysts
journal, June 2010

  • Zhang, Qiao; Lee, Ilkeun; Ge, Jianping
  • Advanced Functional Materials, Vol. 20, Issue 14
  • DOI: 10.1002/adfm.201000428

Epitaxial Growth of Au-Pt-Ni Nanorods for Direct High Selectivity H 2 O 2 Production
journal, October 2016


Degradation of Carbon-Supported Pt Bimetallic Nanoparticles by Surface Segregation
journal, November 2009

  • Mayrhofer, Karl J. J.; Hartl, Katrin; Juhart, Viktorija
  • Journal of the American Chemical Society, Vol. 131, Issue 45
  • DOI: 10.1021/ja9074216

Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers
journal, June 2017

  • Xu, Jiaqi; Li, Xiaodong; Liu, Wei
  • Angewandte Chemie International Edition, Vol. 56, Issue 31
  • DOI: 10.1002/anie.201704928

Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles
journal, January 2018


Rh-MnO Interface Sites Formed by Atomic Layer Deposition Promote Syngas Conversion to Higher Oxygenates
journal, August 2017


Area-Selective Atomic Layer Deposition of Metal Oxides on Noble Metals through Catalytic Oxygen Activation
journal, January 2018


Drinking Water Purification by Electrosynthesis of Hydrogen Peroxide in a Power-Producing PEM Fuel Cell
journal, September 2013


High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials
journal, January 2018


Oxygen Electroreduction through a Superoxide Intermediate on Bi-Modified Au Surfaces
journal, April 2005

  • Li, Xiao; Gewirth, Andrew A.
  • Journal of the American Chemical Society, Vol. 127, Issue 14
  • DOI: 10.1021/ja043170a

Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport
journal, January 2013

  • Zalitis, Christopher M.; Kramer, Denis; Kucernak, Anthony R.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 12
  • DOI: 10.1039/c3cp44431g

Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition
journal, March 2012


Recent Advances in the Stabilization of Platinum Electrocatalysts for Fuel-Cell Reactions
journal, October 2013


Single Atom Hot-Spots at Au–Pd Nanoalloys for Electrocatalytic H 2 O 2 Production
journal, December 2011

  • Jirkovský, Jakub S.; Panas, Itai; Ahlberg, Elisabet
  • Journal of the American Chemical Society, Vol. 133, Issue 48
  • DOI: 10.1021/ja206477z

Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H 2 O 2
journal, January 2017

  • Chen, Zhihua; Chen, Shucheng; Siahrostami, Samira
  • Reaction Chemistry & Engineering, Vol. 2, Issue 2
  • DOI: 10.1039/C6RE00195E

Catalytic Synthesis of Neutral H 2 O 2 Solutions from O 2 and H 2 by a Fuel Cell Reaction
journal, December 2008


Selective Electrochemical H 2 O 2 Production through Two-Electron Oxygen Electrochemistry
journal, September 2018

  • Jiang, Yuanyuan; Ni, Pengjuan; Chen, Chuanxia
  • Advanced Energy Materials, Vol. 8, Issue 31
  • DOI: 10.1002/aenm.201801909

In Vitro Studies Evaluating Leaching of Mercury from Mine Waste Calcine Using Simulated Human Body Fluids
journal, May 2010

  • Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.
  • Environmental Science & Technology, Vol. 44, Issue 12
  • DOI: 10.1021/es1001133

Synthesis and Stabilization of Supported Metal Catalysts by Atomic Layer Deposition
journal, March 2013

  • Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar300229c

H2O2 Determination by the I3- Method and by KMnO4 Titration
journal, September 1994

  • Klassen, Normal V.; Marchington, David.; McGowan, Heather C. E.
  • Analytical Chemistry, Vol. 66, Issue 18
  • DOI: 10.1021/ac00090a020

Understanding Structure–Property Relationships of MoO 3 -Promoted Rh Catalysts for Syngas Conversion to Alcohols
journal, November 2019

  • Asundi, Arun S.; Hoffman, Adam S.; Bothra, Pallavi
  • Journal of the American Chemical Society, Vol. 141, Issue 50
  • DOI: 10.1021/jacs.9b07460

Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction
journal, September 2019


Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism
journal, January 2013

  • Diaz-Morales, Oscar; Calle-Vallejo, Federico; de Munck, Casper
  • Chemical Science, Vol. 4, Issue 6
  • DOI: 10.1039/c3sc50301a

Neutral H2O2 Synthesis by Electrolysis of Water and O2
journal, February 2008

  • Yamanaka, Ichiro; Murayama, Toru
  • Angewandte Chemie International Edition, Vol. 47, Issue 10
  • DOI: 10.1002/anie.200704431

Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity
journal, September 2011

  • Shao, Minhua; Peles, Amra; Shoemaker, Krista
  • Nano Letters, Vol. 11, Issue 9
  • DOI: 10.1021/nl2017459

Review Article: Catalysts design and synthesis via selective atomic layer deposition
journal, January 2018

  • Cao, Kun; Cai, Jiaming; Liu, Xiao
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 36, Issue 1
  • DOI: 10.1116/1.5000587

Reduction of Oxygen on Dispersed Nanocrystalline CoS 2
journal, November 2012

  • Jirkovský, Jakub S.; Björling, Alexander; Ahlberg, Elisabet
  • The Journal of Physical Chemistry C, Vol. 116, Issue 46
  • DOI: 10.1021/jp307669k

Surface functionalization on nanoparticles via atomic layer deposition
journal, April 2020


A mechanistic study of the electrochemical oxygen reduction on the model semiconductor n-Ge(100) by ATR-IR and DFT
journal, January 2013

  • Nayak, Simantini; Biedermann, P. Ulrich; Stratmann, Martin
  • Phys. Chem. Chem. Phys., Vol. 15, Issue 16
  • DOI: 10.1039/C2CP43909C

Direct and Continuous Production of Hydrogen Peroxide with 93 % Selectivity Using a Fuel-Cell System
journal, August 2003

  • Yamanaka, Ichiro; Onizawa, Takeshi; Takenaka, Sakae
  • Angewandte Chemie International Edition, Vol. 42, Issue 31
  • DOI: 10.1002/anie.200351343

Atomic Structure of Pt 3 Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy
journal, December 2015

  • Becknell, Nigel; Kang, Yijin; Chen, Chen
  • Journal of the American Chemical Society, Vol. 137, Issue 50
  • DOI: 10.1021/jacs.5b09639

Toward the Decentralized Electrochemical Production of H 2 O 2 : A Focus on the Catalysis
journal, March 2018

  • Yang, Sungeun; Verdaguer-Casadevall, Arnau; Arnarson, Logi
  • ACS Catalysis, Vol. 8, Issue 5
  • DOI: 10.1021/acscatal.8b00217

Adsorbed Intermediates in Oxygen Reduction on Platinum Nanoparticles Observed by In Situ IR Spectroscopy
journal, August 2018

  • Nayak, Simantini; McPherson, Ian J.; Vincent, Kylie A.
  • Angewandte Chemie International Edition, Vol. 57, Issue 39
  • DOI: 10.1002/anie.201804978

Alloys of platinum and early transition metals as oxygen reduction electrocatalysts
journal, September 2009

  • Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.
  • Nature Chemistry, Vol. 1, Issue 7, p. 552-556
  • DOI: 10.1038/nchem.367

A Review of Phosphide-Based Materials for Electrocatalytic Hydrogen Evolution
journal, October 2015


Interface Tailoring of Heterogeneous Catalysts by Atomic Layer Deposition
journal, September 2018