DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mixed quantum–classical approach to model non-adiabatic electron–nuclear dynamics: Detailed balance and improved surface hopping method

Abstract

We develop a density matrix formalism to describe coupled electron–nuclear dynamics. To this end, we introduce an effective Hamiltonian formalism that describes electronic transitions and small (quantum) nuclear fluctuations along a classical trajectory of the nuclei. Using this Hamiltonian, we derive equations of motion for the electronic occupation numbers and for the nuclear coordinates and momenta. We show that, in the limit, when the number of nuclear degrees of freedom coupled to a given electronic transition is sufficiently high (i.e., the strong decoherence limit), the equations of motion for the electronic occupation numbers become Markovian. Furthermore, the transition rates in these (rate) equations are asymmetric with respect to the lower-to-higher energy transitions and vice versa. In thermal equilibrium, such asymmetry corresponds to the detailed balance condition. We also study the equations for the electronic occupations in the non-Markovian regime and develop a surface hopping algorithm based on our formalism. To treat the decoherence effects, we introduce additional “virtual” nuclear wave packets whose interference with the “real” (physical) wave packets leads to the reduction in coupling between the electronic states (i.e., decoherence) as well as to the phase shifts that improve the accuracy of the numerical approach. Remarkably, the same phasemore » shifts lead to the detailed balance condition in the strong decoherence limit.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]
  1. National Academy of Sciences of Ukraine (NASU), Kyiv (Ukraine). Institute of Physics
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1813849
Alternate Identifier(s):
OSTI ID: 1648579
Report Number(s):
LA-UR-20-24033
Journal ID: ISSN 0021-9606; TRN: US2213378
Grant/Contract Number:  
89233218CNA000001; 20200074ER
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 153; Journal Issue: 7; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; Chemical reactions; Quantum chemical dynamics; Density-matrix; Surface hopping

Citation Formats

Stolyarov, E. V., White, A. J., and Mozyrsky, D. Mixed quantum–classical approach to model non-adiabatic electron–nuclear dynamics: Detailed balance and improved surface hopping method. United States: N. p., 2020. Web. doi:10.1063/5.0014284.
Stolyarov, E. V., White, A. J., & Mozyrsky, D. Mixed quantum–classical approach to model non-adiabatic electron–nuclear dynamics: Detailed balance and improved surface hopping method. United States. https://doi.org/10.1063/5.0014284
Stolyarov, E. V., White, A. J., and Mozyrsky, D. Fri . "Mixed quantum–classical approach to model non-adiabatic electron–nuclear dynamics: Detailed balance and improved surface hopping method". United States. https://doi.org/10.1063/5.0014284. https://www.osti.gov/servlets/purl/1813849.
@article{osti_1813849,
title = {Mixed quantum–classical approach to model non-adiabatic electron–nuclear dynamics: Detailed balance and improved surface hopping method},
author = {Stolyarov, E. V. and White, A. J. and Mozyrsky, D.},
abstractNote = {We develop a density matrix formalism to describe coupled electron–nuclear dynamics. To this end, we introduce an effective Hamiltonian formalism that describes electronic transitions and small (quantum) nuclear fluctuations along a classical trajectory of the nuclei. Using this Hamiltonian, we derive equations of motion for the electronic occupation numbers and for the nuclear coordinates and momenta. We show that, in the limit, when the number of nuclear degrees of freedom coupled to a given electronic transition is sufficiently high (i.e., the strong decoherence limit), the equations of motion for the electronic occupation numbers become Markovian. Furthermore, the transition rates in these (rate) equations are asymmetric with respect to the lower-to-higher energy transitions and vice versa. In thermal equilibrium, such asymmetry corresponds to the detailed balance condition. We also study the equations for the electronic occupations in the non-Markovian regime and develop a surface hopping algorithm based on our formalism. To treat the decoherence effects, we introduce additional “virtual” nuclear wave packets whose interference with the “real” (physical) wave packets leads to the reduction in coupling between the electronic states (i.e., decoherence) as well as to the phase shifts that improve the accuracy of the numerical approach. Remarkably, the same phase shifts lead to the detailed balance condition in the strong decoherence limit.},
doi = {10.1063/5.0014284},
journal = {Journal of Chemical Physics},
number = 7,
volume = 153,
place = {United States},
year = {Fri Aug 21 00:00:00 EDT 2020},
month = {Fri Aug 21 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nonadiabatic dynamics with the help of multiconfigurational Ehrenfest method: Improved theory and fully quantum 24D simulation of pyrazine
journal, June 2010

  • Shalashilin, Dmitrii V.
  • The Journal of Chemical Physics, Vol. 132, Issue 24
  • DOI: 10.1063/1.3442747

A walk through the approximations of ab initio multiple spawning
journal, April 2018

  • Mignolet, Benoit; Curchod, Basile F. E.
  • The Journal of Chemical Physics, Vol. 148, Issue 13
  • DOI: 10.1063/1.5022877

Time‐dependent approach to semiclassical dynamics
journal, February 1975

  • Heller, Eric J.
  • The Journal of Chemical Physics, Vol. 62, Issue 4
  • DOI: 10.1063/1.430620

Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
journal, August 2014

  • Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.
  • The Journal of Chemical Physics, Vol. 141, Issue 5
  • DOI: 10.1063/1.4891530

Variational nonadiabatic dynamics in the moving crude adiabatic representation: Further merging of nuclear dynamics and electronic structure
journal, March 2018

  • Joubert-Doriol, Loïc; Izmaylov, Artur F.
  • The Journal of Chemical Physics, Vol. 148, Issue 11
  • DOI: 10.1063/1.5020655

Trajectory-guided configuration interaction simulations of multidimensional quantum dynamics
journal, February 2012

  • Habershon, Scott
  • The Journal of Chemical Physics, Vol. 136, Issue 5
  • DOI: 10.1063/1.3681167

Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance
journal, October 2015

  • Jain, Amber; Subotnik, Joseph E.
  • The Journal of Chemical Physics, Vol. 143, Issue 13
  • DOI: 10.1063/1.4930549

Nonadiabatic quantum molecular dynamics with detailed balance
journal, November 2018


Communication: Proper treatment of classically forbidden electronic transitions significantly improves detailed balance in surface hopping
journal, June 2016

  • Sifain, Andrew E.; Wang, Linjun; Prezhdo, Oleg V.
  • The Journal of Chemical Physics, Vol. 144, Issue 21
  • DOI: 10.1063/1.4953444

A new approach to decoherence and momentum rescaling in the surface hopping algorithm
journal, January 2011

  • Subotnik, Joseph E.; Shenvi, Neil
  • The Journal of Chemical Physics, Vol. 134, Issue 2
  • DOI: 10.1063/1.3506779

Multiconfigurational quantum propagation with trajectory-guided generalized coherent states
journal, March 2016

  • Grigolo, Adriano; Viscondi, Thiago F.; de Aguiar, Marcus A. M.
  • The Journal of Chemical Physics, Vol. 144, Issue 9
  • DOI: 10.1063/1.4942926

An “optimal” spawning algorithm for adaptive basis set expansion in nonadiabatic dynamics
journal, April 2009

  • Yang, Sandy; Coe, Joshua D.; Kaduk, Benjamin
  • The Journal of Chemical Physics, Vol. 130, Issue 13
  • DOI: 10.1063/1.3103930

A b initio quantum direct dynamics simulations of ultrafast photochemistry with Multiconfigurational Ehrenfest approach
journal, August 2017


Branching corrected surface hopping: Resetting wavefunction coefficients based on judgement of wave packet reflection
journal, April 2019

  • Xu, Jiabo; Wang, Linjun
  • The Journal of Chemical Physics, Vol. 150, Issue 16
  • DOI: 10.1063/1.5090927

On the inclusion of the diagonal Born-Oppenheimer correction in surface hopping methods
journal, April 2016

  • Gherib, Rami; Ye, Liyuan; Ryabinkin, Ilya G.
  • The Journal of Chemical Physics, Vol. 144, Issue 15
  • DOI: 10.1063/1.4945817

Augmented Ehrenfest dynamics yields a rate for surface hopping
journal, April 2010

  • Subotnik, Joseph E.
  • The Journal of Chemical Physics, Vol. 132, Issue 13
  • DOI: 10.1063/1.3314248

Detailed Balance in Ehrenfest Mixed Quantum-Classical Dynamics
journal, January 2006

  • Parandekar, Priya V.; Tully, John C.
  • Journal of Chemical Theory and Computation, Vol. 2, Issue 2
  • DOI: 10.1021/ct050213k

Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics
journal, May 2014

  • Akimov, Alexey V.; Long, Run; Prezhdo, Oleg V.
  • The Journal of Chemical Physics, Vol. 140, Issue 19
  • DOI: 10.1063/1.4875702

Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials
journal, February 2020


Decoherence-induced surface hopping
journal, December 2012

  • Jaeger, Heather M.; Fischer, Sean; Prezhdo, Oleg V.
  • The Journal of Chemical Physics, Vol. 137, Issue 22
  • DOI: 10.1063/1.4757100

Understanding the Surface Hopping View of Electronic Transitions and Decoherence
journal, May 2016


Phase-corrected surface hopping: Correcting the phase evolution of the electronic wavefunction
journal, July 2011

  • Shenvi, Neil; Subotnik, Joseph E.; Yang, Weitao
  • The Journal of Chemical Physics, Vol. 135, Issue 2
  • DOI: 10.1063/1.3603447

The effect of sampling techniques used in the multiconfigurational Ehrenfest method
journal, May 2018

  • Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.
  • The Journal of Chemical Physics, Vol. 148, Issue 18
  • DOI: 10.1063/1.5020567

Mixed quantum–classical dynamics
journal, January 1998


Simultaneous-trajectory surface hopping: A parameter-free algorithm for implementing decoherence in nonadiabatic dynamics
journal, April 2011

  • Shenvi, Neil; Subotnik, Joseph E.; Yang, Weitao
  • The Journal of Chemical Physics, Vol. 134, Issue 14
  • DOI: 10.1063/1.3575588

Improved Ehrenfest Approach to Model Correlated Electron–Nuclear Dynamics
journal, January 2019

  • Baskov, Roman; White, Alexander J.; Mozyrsky, Dmitry
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 3
  • DOI: 10.1021/acs.jpclett.8b03061

Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics
journal, April 2018


Can we derive Tully's surface-hopping algorithm from the semiclassical quantum Liouville equation? Almost, but only with decoherence
journal, December 2013

  • Subotnik, Joseph E.; Ouyang, Wenjun; Landry, Brian R.
  • The Journal of Chemical Physics, Vol. 139, Issue 21
  • DOI: 10.1063/1.4829856

Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations
journal, April 1996

  • Schwartz, Benjamin J.; Bittner, Eric R.; Prezhdo, Oleg V.
  • The Journal of Chemical Physics, Vol. 104, Issue 15
  • DOI: 10.1063/1.471326

Basis Set Generation for Quantum Dynamics Simulations Using Simple Trajectory-Based Methods
journal, December 2014

  • Saller, Maximilian A. C.; Habershon, Scott
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 1
  • DOI: 10.1021/ct500657f

Electronic energy levels with the help of trajectory-guided random grid of coupled wave packets. I. Six-dimensional simulation of H2
journal, June 2005

  • Shalashilin, Dmitrii V.; Child, Mark S.
  • The Journal of Chemical Physics, Vol. 122, Issue 22
  • DOI: 10.1063/1.1926268

Quantum mechanics with the basis set guided by Ehrenfest trajectories: Theory and application to spin-boson model
journal, June 2009

  • Shalashilin, Dmitrii V.
  • The Journal of Chemical Physics, Vol. 130, Issue 24
  • DOI: 10.1063/1.3153302

Molecular dynamics with electronic transitions
journal, July 1990

  • Tully, John C.
  • The Journal of Chemical Physics, Vol. 93, Issue 2
  • DOI: 10.1063/1.459170

Communication: Note on detailed balance in symmetrical quasi-classical models for electronically non-adiabatic dynamics
journal, April 2015

  • Miller, William H.; Cotton, Stephen J.
  • The Journal of Chemical Physics, Vol. 142, Issue 13
  • DOI: 10.1063/1.4916945

Generalization of Classical Mechanics for Nuclear Motions on Nonadiabatically Coupled Potential Energy Surfaces in Chemical Reactions
journal, October 2007

  • Takatsuka, Kazuo
  • The Journal of Physical Chemistry A, Vol. 111, Issue 41
  • DOI: 10.1021/jp072233j

Beyond Born-Oppenheimer
book, January 2006


Progress in the Theory of Mixed Quantum-Classical Dynamics
journal, May 2006


Achieving partial decoherence in surface hopping through phase correction
journal, December 2012

  • Shenvi, Neil; Yang, Weitao
  • The Journal of Chemical Physics, Vol. 137, Issue 22
  • DOI: 10.1063/1.4746407

Quasi-Diabatic Representation for Nonadiabatic Dynamics Propagation
journal, February 2018

  • Mandal, Arkajit; Yamijala, Sharma SRKC; Huo, Pengfei
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 4
  • DOI: 10.1021/acs.jctc.7b01178

A new approach to decoherence and momentum rescaling in the surface hopping algorithm
journal, January 2011

  • Subotnik, Joseph E.; Shenvi, Neil
  • The Journal of Chemical Physics, Vol. 134, Issue 2
  • DOI: 10.1063/1.3506779

Simultaneous-trajectory surface hopping: A parameter-free algorithm for implementing decoherence in nonadiabatic dynamics
journal, April 2011

  • Shenvi, Neil; Subotnik, Joseph E.; Yang, Weitao
  • The Journal of Chemical Physics, Vol. 134, Issue 14
  • DOI: 10.1063/1.3575588

Can we derive Tully's surface-hopping algorithm from the semiclassical quantum Liouville equation? Almost, but only with decoherence
journal, December 2013

  • Subotnik, Joseph E.; Ouyang, Wenjun; Landry, Brian R.
  • The Journal of Chemical Physics, Vol. 139, Issue 21
  • DOI: 10.1063/1.4829856

Photon engineering for quantum information processing
journal, October 2003

  • U'Ren, A. B.; Banaszek, K.; Walmsley, I. A.
  • Quantum Information and Computation, Vol. 3, Issue special
  • DOI: 10.26421/qic3.s-3

Non-Adiabatic Quantum Molecular Dynamics with Detailed Balance
text, January 2017