DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deformation and failure in extreme regimes by high-energy pulsed lasers: A review

Abstract

The use of high-power pulsed lasers to probe the response of materials at pressures of hundreds of GPa up to several TPa, time durations of nanoseconds, and strain rates of 106–10 s-1 is revealing novel mechanisms of plastic deformation, phase transformations, and even amorphization. This unique experimental tool, aided by advanced diagnostics, analysis, and characterization, allows us to explore these new regimes that simulate those encountered in the interiors of planets. Fundamental Materials Science questions such as dislocation velocity regimes, the transition between thermally-activated and phonon drag regimes, the slip-twinning transition, the ultimate tensile strength of metals, the dislocation mechanisms of void growth are being answered through this powerful tool. In parallel with experiments, molecular dynamics simulations provide modeling and visualization at comparable strain rates (108–1010 s-1) and time durations (hundreds of picoseconds). Finally, this powerful synergy is illustrated in our past and current work, using representative face-centered cubic (fcc) copper, body-centered cubic (bcc) tantalum and diamond cubic silicon as model structures.

Authors:
 [1];  [2];  [1];  [1]
  1. University of California, San Diego, La Jolla, CA (United States)
  2. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Univ. of California, San Diego, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1812127
Alternate Identifier(s):
OSTI ID: 1419133; OSTI ID: 1462275; OSTI ID: 1808247
Report Number(s):
LLNL-JRNL-824860; LLNL-JRNL-823727
Journal ID: ISSN 0921-5093; 1038383; TRN: US2213218
Grant/Contract Number:  
AC52-07NA27344; NA0002080; FG52-09NA29043; 09-LR-06–118456-MEYM
Resource Type:
Accepted Manuscript
Journal Name:
Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing
Additional Journal Information:
Journal Volume: 688; Journal Issue: na; Journal ID: ISSN 0921-5093
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 36 MATERIALS SCIENCE; Shock waves; Lasers; Dislocations; Twins; Phase transitions; shock waves; lasers; dislocations; twins; phase transitions

Citation Formats

Remington, Tane P., Remington, Bruce A., Hahn, Eric N., and Meyers, Marc A. Deformation and failure in extreme regimes by high-energy pulsed lasers: A review. United States: N. p., 2017. Web. doi:10.1016/j.msea.2017.01.114.
Remington, Tane P., Remington, Bruce A., Hahn, Eric N., & Meyers, Marc A. Deformation and failure in extreme regimes by high-energy pulsed lasers: A review. United States. https://doi.org/10.1016/j.msea.2017.01.114
Remington, Tane P., Remington, Bruce A., Hahn, Eric N., and Meyers, Marc A. Thu . "Deformation and failure in extreme regimes by high-energy pulsed lasers: A review". United States. https://doi.org/10.1016/j.msea.2017.01.114. https://www.osti.gov/servlets/purl/1812127.
@article{osti_1812127,
title = {Deformation and failure in extreme regimes by high-energy pulsed lasers: A review},
author = {Remington, Tane P. and Remington, Bruce A. and Hahn, Eric N. and Meyers, Marc A.},
abstractNote = {The use of high-power pulsed lasers to probe the response of materials at pressures of hundreds of GPa up to several TPa, time durations of nanoseconds, and strain rates of 106–101° s-1 is revealing novel mechanisms of plastic deformation, phase transformations, and even amorphization. This unique experimental tool, aided by advanced diagnostics, analysis, and characterization, allows us to explore these new regimes that simulate those encountered in the interiors of planets. Fundamental Materials Science questions such as dislocation velocity regimes, the transition between thermally-activated and phonon drag regimes, the slip-twinning transition, the ultimate tensile strength of metals, the dislocation mechanisms of void growth are being answered through this powerful tool. In parallel with experiments, molecular dynamics simulations provide modeling and visualization at comparable strain rates (108–1010 s-1) and time durations (hundreds of picoseconds). Finally, this powerful synergy is illustrated in our past and current work, using representative face-centered cubic (fcc) copper, body-centered cubic (bcc) tantalum and diamond cubic silicon as model structures.},
doi = {10.1016/j.msea.2017.01.114},
journal = {Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing},
number = na,
volume = 688,
place = {United States},
year = {Thu Feb 02 00:00:00 EST 2017},
month = {Thu Feb 02 00:00:00 EST 2017}
}

Journal Article:

Citation Metrics:
Cited by: 47 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Laser generation of high‐amplitude stress waves in materials
journal, March 1979

  • Fairand, B. P.; Clauer, A. H.
  • Journal of Applied Physics, Vol. 50, Issue 3
  • DOI: 10.1063/1.326137

Dynamical behavior of tantalum
conference, January 1994

  • Furnish, Michael D.; Chhabildas, Lalit C.; Steinberg, Daniel J.
  • High-pressure science and technology—1993, AIP Conference Proceedings
  • DOI: 10.1063/1.46296

Direct Observation of the α ε Transition in Shock-Compressed Iron via Nanosecond X-Ray Diffraction
journal, August 2005


Growth and collapse of nanovoids in tantalum monocrystals
journal, February 2011


Shock hardening behavior of Cu-8.7Ge at very short pulse durations
journal, June 1978


Deformation Substructures and Their Transitions in Laser Shock–Compressed Copper-Aluminum Alloys
journal, December 2007

  • Meyers, M. A.; Schneider, M. S.; Jarmakani, H.
  • Metallurgical and Materials Transactions A, Vol. 39, Issue 2
  • DOI: 10.1007/s11661-007-9359-3

Shock viscosity and the prediction of shock wave rise times
journal, July 1985

  • Swegle, J. W.; Grady, D. E.
  • Journal of Applied Physics, Vol. 58, Issue 2
  • DOI: 10.1063/1.336184

Pressure and shear-induced amorphization of silicon
journal, December 2015


Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects
journal, August 2010


Micromechanics of spall and damage in tantalum
journal, June 1996

  • Zurek, A. K.; Thissell, W. R.; Johnson, J. N.
  • Journal of Materials Processing Technology, Vol. 60, Issue 1-4
  • DOI: 10.1016/0924-0136(96)02340-0

Shock-induced deformation twinning in tantalum
journal, January 1997


Identification of stress-induced nucleation sites for martensite in Fe-31.8 wt% Ni-0.02 wt% C alloy
journal, February 1992


Experimental measurements of the strength of metals approaching the theoretical limit predicted by the equation of state
journal, March 2000

  • Moshe, E.; Eliezer, S.; Henis, Z.
  • Applied Physics Letters, Vol. 76, Issue 12
  • DOI: 10.1063/1.126094

Amorphization and nanocrystallization of silicon under shock compression
journal, January 2016


Shock-induced dislocations
journal, October 1962


Dislocation Velocities, Dislocation Densities, and Plastic Flow in Lithium Fluoride Crystals
journal, February 1959

  • Johnston, W. G.; Gilman, J. J.
  • Journal of Applied Physics, Vol. 30, Issue 2
  • DOI: 10.1063/1.1735121

Laws for Work-Hardening and Low-Temperature Creep
journal, January 1976

  • Kocks, U. F.
  • Journal of Engineering Materials and Technology, Vol. 98, Issue 1
  • DOI: 10.1115/1.3443340

Isentropic/shock compression and recovery methodology for materials using high-amplitude laser pulses
journal, August 2013


Shock-induced phase transformation in tantalum
journal, September 2010


Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation
journal, October 2014


Martensitic transformation induced by a tensile stress pulse in Fe-22.5 wt% Ni-4wt% Mn alloy
journal, April 1988


Shock-Induced Omega Phase in Tantalum
journal, April 1998


Non-equilibrium molecular dynamics simulations of spall in single crystal tantalum
conference, January 2017

  • Hahn, Eric N.; Germann, Timothy C.; Ravelo, Ramon J.
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2015: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.4971594

Shock deformation of face-centred-cubic metals on subnanosecond timescales
journal, September 2006

  • Bringa, E. M.; Rosolankova, K.; Rudd, R. E.
  • Nature Materials, Vol. 5, Issue 10
  • DOI: 10.1038/nmat1735

High-pressure, laser-driven deformation of an aluminum alloy
journal, September 2004

  • McNaney, J. M.; Edwards, M. J.; Becker, R.
  • Metallurgical and Materials Transactions A, Vol. 35, Issue 9
  • DOI: 10.1007/s11661-004-0208-3

Laser shock-induced spalling and fragmentation in vanadium
journal, August 2010


Resistance to dynamic deformation and fracture of tantalum with different grain and defect structures
journal, April 2012

  • Razorenov, S. V.; Kanel’, G. I.; Garkushin, G. V.
  • Physics of the Solid State, Vol. 54, Issue 4
  • DOI: 10.1134/S1063783412040233

A constitutive model for strain rates from 10 4 to 10 6 s 1
journal, February 1989

  • Steinberg, D. J.; Lund, C. M.
  • Journal of Applied Physics, Vol. 65, Issue 4
  • DOI: 10.1063/1.342968

Pressure-shear impact investigation of strain rate history effects in oxygen-free high-conductivity copper
journal, August 1992

  • Tong, Wei; Clifton, Rodney J.; Huang, Shihui
  • Journal of the Mechanics and Physics of Solids, Vol. 40, Issue 6
  • DOI: 10.1016/0022-5096(92)90015-T

Laser compression of nanocrystalline tantalum
journal, December 2013


Grain-Size-Independent Plastic Flow at Ultrahigh Pressures and Strain Rates
journal, February 2015


A mechanism for dislocation generation in shock-wave deformation
journal, January 1978


Quantitative description of damage evolution in ductile fracture of tantalum
journal, March 2000

  • Rivas, J. M.; Zurek, A. K.; Thissell, W. R.
  • Metallurgical and Materials Transactions A, Vol. 31, Issue 3
  • DOI: 10.1007/s11661-000-0028-z

Influence of peak pressure and temperature on the structure/property response of shock- loaded Ta and Ta-10W
journal, October 1995

  • Gray, George T.; Vecchio, Kenneth S.
  • Metallurgical and Materials Transactions A, Vol. 26, Issue 10
  • DOI: 10.1007/BF02669413

Multiscale dislocation dynamics analyses of laser shock peening in silicon single crystals
journal, December 2006


Multiscale strength (MS) models: their foundation, their successes, and their challenges
journal, May 2014


Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals
journal, November 2008


A multiscale model of plasticity
journal, September 2002


Model of plastic deformation for extreme loading conditions
journal, January 2003

  • Preston, Dean L.; Tonks, Davis L.; Wallace, Duane C.
  • Journal of Applied Physics, Vol. 93, Issue 1
  • DOI: 10.1063/1.1524706

Effect of microstructural length scales on spall behavior of copper
journal, September 2004

  • Minich, Roger W.; Cazamias, James U.; Kumar, Mukui
  • Metallurgical and Materials Transactions A, Vol. 35, Issue 9
  • DOI: 10.1007/s11661-004-0212-7

Inverse Hall–Petch relationship in nanocrystalline tantalum
journal, September 2013


The strength of single crystal copper under uniaxial shock compression at 100 GPa
journal, January 2010


On the ultimate tensile strength of tantalum
journal, March 2017


The spall strength of condensed matter
journal, January 1988


The onset of twinning in metals: a constitutive description
journal, November 2001


A criterion for the time dependence of dynamic fracture
journal, December 1968

  • Tuler, Floyd R.; Butcher, Barry M.
  • International Journal of Fracture Mechanics, Vol. 4, Issue 4, p. 431-437
  • DOI: 10.1007/BF00186808

Experimental and numerical study of the tantalum single crystal spallation
journal, September 2012

  • Soulard, L.; Bontaz-Carion, J.; Cuq-Lelandais, J. P.
  • The European Physical Journal B, Vol. 85, Issue 10
  • DOI: 10.1140/epjb/e2012-30269-9

Dynamic fracture (spalling) of metals
journal, January 1983


Laser compression of monocrystalline tantalum
journal, November 2012


Dynamic behavior of an ordinary chondrite: The effects of microstructure on strength, failure and fragmentation
journal, November 2015


Effect of shock compression method on the defect substructure in monocrystalline copper
journal, November 2005

  • Cao, Bu Yang; Lassila, David H.; Schneider, Matt S.
  • Materials Science and Engineering: A, Vol. 409, Issue 1-2
  • DOI: 10.1016/j.msea.2005.06.076

Laser-induced shock compression of copper: Orientation and pressure decay effects
journal, September 2004

  • Schneider, M. S.; Kad, B. K.; Meyers, M. A.
  • Metallurgical and Materials Transactions A, Vol. 35, Issue 9
  • DOI: 10.1007/s11661-004-0209-2

Void growth by dislocation emission
journal, April 2004


Ductile versus brittle behaviour of crystals
journal, January 1974

  • Rice, James R.; Thomson, Robb
  • The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, Vol. 29, Issue 1
  • DOI: 10.1080/14786437408213555

Laser‐induced spall in metals: Experiment and simulation
journal, January 1990

  • Eliezer, Shalom; Gilath, Irith; Bar‐Noy, Tuvia
  • Journal of Applied Physics, Vol. 67, Issue 2
  • DOI: 10.1063/1.345777

Shock Compression of Monocrystalline Copper: Atomistic Simulations
journal, July 2007

  • Cao, Buyang; Bringa, Eduardo M.; Meyers, Marc André
  • Metallurgical and Materials Transactions A, Vol. 38, Issue 11
  • DOI: 10.1007/s11661-007-9248-9

On the homogeneous nucleation and propagation of dislocations under shock compression
journal, August 2016


A multiscale strength model for extreme loading conditions
journal, April 2011

  • Barton, N. R.; Bernier, J. V.; Becker, R.
  • Journal of Applied Physics, Vol. 109, Issue 7
  • DOI: 10.1063/1.3553718

Multiscale dislocation dynamics simulations of shock compression in copper single crystal
journal, December 2005

  • Shehadeh, Mutasem A.; Zbib, Hussein M.; Diaz de la Rubia, Tomas
  • International Journal of Plasticity, Vol. 21, Issue 12
  • DOI: 10.1016/j.ijplas.2004.12.004

Spall fracture in aluminum monocrystals: a dislocation‐dynamics approach
journal, December 1972

  • Stevens, A. L.; Davison, Lee; Warren, W. E.
  • Journal of Applied Physics, Vol. 43, Issue 12
  • DOI: 10.1063/1.1661046

Computational models for ductile and brittle fracture
journal, November 1976

  • Seaman, Lynn; Curran, Donald R.; Shockey, Donald A.
  • Journal of Applied Physics, Vol. 47, Issue 11
  • DOI: 10.1063/1.322523

Shock-induced displacive transformations in tantalum and tantalum-tungsten alloys
journal, August 1998


In situ diffraction measurements of lattice response due to shock loading, including direct observation of the α–ε phase transition in iron
journal, December 2006


Strong stabilization of the Rayleigh–Taylor instability by material strength at megabar pressures
journal, May 2010

  • Park, Hye-Sook; Remington, B. A.; Becker, R. C.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3363170

The influence of shock-loading path on the spallation response of Ta
journal, May 2014


The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation
journal, September 2015

  • Remington, Bruce A.; Rudd, Robert E.; Wark, Justin S.
  • Physics of Plasmas, Vol. 22, Issue 9
  • DOI: 10.1063/1.4930134

Femtosecond Visualization of Lattice Dynamics in Shock-Compressed Matter
journal, October 2013


Dynamic strength of tantalum under impact
journal, May 2014


The role of cold work on the shock response of tantalum
journal, June 2013

  • Millett, J. C. F.; Whiteman, G.; Park, N. T.
  • Journal of Applied Physics, Vol. 113, Issue 23
  • DOI: 10.1063/1.4810896

Kinetics of martensitic transformation induced by a tensile stress pulse
journal, August 1986


Laser‐Generated Stress Waves
journal, February 1970


Experiments in ICF, materials science, and astrophysics
journal, January 2013


Laser-induced shock waves in condensed matter: some techniques and applications
journal, December 2004


Ductile tensile failure in metals through initiation and growth of nanosized voids
journal, July 2012


Chapter 89 Dislocations in Shock Compression and Release
book, January 2009


Viscous Rayleigh-Taylor Instability Experiments at High Pressure and Strain Rate
journal, April 2010


Stochastic simulation of dislocation glide in tantalum and Ta-based alloys
journal, June 2005

  • Deo, C.; Srolovitz, D.; Cai, W.
  • Journal of the Mechanics and Physics of Solids, Vol. 53, Issue 6
  • DOI: 10.1016/j.jmps.2005.01.003

Subnanosecond x-ray diffraction from laser-shocked crystals
journal, September 1989

  • Wark, Justin S.; Whitlock, Robert R.; Hauer, Allan A.
  • Physical Review B, Vol. 40, Issue 8
  • DOI: 10.1103/PhysRevB.40.5705

Dislocation Microstructures and Plastic Flow: A 3D Simulation
journal, January 1992


A type of Plastic Deformation new in Metals
journal, June 1942


Spall fracture: methodological aspects, mechanisms and governing factors
journal, January 2010


Generation of Elastic Waves by Transient Surface Heating
journal, December 1963


Phase Transformation in Tantalum under Extreme Laser Deformation
journal, October 2015

  • Lu, C. -H.; Hahn, E. N.; Remington, B. A.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep15064

Supersonic Dislocation Bursts in Silicon
journal, June 2016

  • Hahn, E. N.; Zhao, S.; Bringa, E. M.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26977

Dislocation mobility and the mechanical response of b.c.c. single crystals: A mesoscopic approach
journal, May 1998


Laser-induced shock compression of monocrystalline copper: characterization and analysis
journal, March 2003


The dynamic strength of an ordinary chondrite: The dynamic strength of an ordinary chondrite
journal, November 2011


Investigation of laser shock induced ductile damage at ultra-high strain rate by using large scale MD simulations
conference, January 2012

  • Cuq-Lelandais, Jean-Paul; Boustie, Michel; Soulard, Laurent
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.3686487

Dislocation behavior in silicon crystal induced by laser shock peening: A multiscale simulation approach
journal, November 2005


Anomalous Elastic Response of Silicon to Uniaxial Shock Compression on Nanosecond Time Scales
journal, March 2001


Works referencing / citing this record:

Influence of defects on the shock Hugoniot of tantalum
journal, June 2019

  • Hahn, Eric N.; Fensin, Saryu J.
  • Journal of Applied Physics, Vol. 125, Issue 21
  • DOI: 10.1063/1.5096526

Understanding and predicting damage and failure at grain boundaries in BCC Ta
journal, October 2019

  • Chen, J.; Hahn, E. N.; Dongare, A. M.
  • Journal of Applied Physics, Vol. 126, Issue 16
  • DOI: 10.1063/1.5111837

Role of nanoscale Cu/Ta interfaces on the shock compression and spall failure of nanocrystalline Cu/Ta systems at the atomic scales
journal, December 2017

  • Chen, Jie; Tschopp, Mark A.; Dongare, Avinash M.
  • Journal of Materials Science, Vol. 53, Issue 8
  • DOI: 10.1007/s10853-017-1879-7