skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on September 1, 2021

Title: Hybridizing pseudo-Hamiltonians and non-local pseudopotentials in diffusion Monte Carlo

Abstract

An accurate treatment of effective core potentials (ECPs) requires care in continuum quantum Monte Carlo (QMC) methods. While most QMC studies have settled on the use of familiar non-local (NL) pseudopotentials with additional localization approximations, these approaches have been shown to result in moderate residual errors for some classes of molecular and solid state applications. In this work, we revisit an idea proposed early in the history of QMC ECPs that does not require localization approximations, namely, a differential class of potentials referred to as pseudo-Hamiltonians. We propose to hybridize NL potentials and pseudo-Hamiltonians to reduce residual non-locality of existing potentials. We derive an approach to recast pseudopotentials for 3d elements as hybrid pseudo-Hamiltonians with optimally reduced NL energy. We demonstrate the fidelity of the hybrid potentials by studying atomic ionization potentials of Ti and Fe and the binding properties of TiO and FeO molecules with diffusion Monte Carlo (DMC). We show that localization errors have been reduced relative to potentials with the same NL channels for Sc–Zn by considering the DMC energy change with respect to the choice of approximate localization. While localization error decreases proportionate to the reduced NL energy without a Jastrow, with a Jastrow, the degreemore » of reduction decreases at higher filling of the d-shell. Our results suggest that a subset of existing ECPs may be recast in this hybrid form to reduce the DMC localization error. They also point to the prospect of further reducing this error by generating ECPs within this hybrid form from the start.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1810018
Alternate Identifier(s):
OSTI ID: 1659351
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
The Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 153; Journal Issue: 10
Country of Publication:
United States
Language:
English

Citation Formats

Krogel, Jaron, and Reboredo, Fernando A. Hybridizing pseudo-Hamiltonians and non-local pseudopotentials in diffusion Monte Carlo. United States: N. p., 2020. Web. https://doi.org/10.1063/5.0016778.
Krogel, Jaron, & Reboredo, Fernando A. Hybridizing pseudo-Hamiltonians and non-local pseudopotentials in diffusion Monte Carlo. United States. https://doi.org/10.1063/5.0016778
Krogel, Jaron, and Reboredo, Fernando A. Tue . "Hybridizing pseudo-Hamiltonians and non-local pseudopotentials in diffusion Monte Carlo". United States. https://doi.org/10.1063/5.0016778.
@article{osti_1810018,
title = {Hybridizing pseudo-Hamiltonians and non-local pseudopotentials in diffusion Monte Carlo},
author = {Krogel, Jaron and Reboredo, Fernando A.},
abstractNote = {An accurate treatment of effective core potentials (ECPs) requires care in continuum quantum Monte Carlo (QMC) methods. While most QMC studies have settled on the use of familiar non-local (NL) pseudopotentials with additional localization approximations, these approaches have been shown to result in moderate residual errors for some classes of molecular and solid state applications. In this work, we revisit an idea proposed early in the history of QMC ECPs that does not require localization approximations, namely, a differential class of potentials referred to as pseudo-Hamiltonians. We propose to hybridize NL potentials and pseudo-Hamiltonians to reduce residual non-locality of existing potentials. We derive an approach to recast pseudopotentials for 3d elements as hybrid pseudo-Hamiltonians with optimally reduced NL energy. We demonstrate the fidelity of the hybrid potentials by studying atomic ionization potentials of Ti and Fe and the binding properties of TiO and FeO molecules with diffusion Monte Carlo (DMC). We show that localization errors have been reduced relative to potentials with the same NL channels for Sc–Zn by considering the DMC energy change with respect to the choice of approximate localization. While localization error decreases proportionate to the reduced NL energy without a Jastrow, with a Jastrow, the degree of reduction decreases at higher filling of the d-shell. Our results suggest that a subset of existing ECPs may be recast in this hybrid form to reduce the DMC localization error. They also point to the prospect of further reducing this error by generating ECPs within this hybrid form from the start.},
doi = {10.1063/5.0016778},
journal = {The Journal of Chemical Physics},
number = 10,
volume = 153,
place = {United States},
year = {2020},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 1, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Quantum Monte Carlo simulations of solids
journal, January 2001


The statistical error of green's function Monte Carlo
journal, June 1986

  • Ceperley, D. M.
  • Journal of Statistical Physics, Vol. 43, Issue 5-6
  • DOI: 10.1007/bf02628307

Valence quantum Monte Carlo with a b i n i t i o effective core potentials
journal, July 1987

  • Hammond, Brian L.; Reynolds, Peter J.; Lester, William A.
  • The Journal of Chemical Physics, Vol. 87, Issue 2
  • DOI: 10.1063/1.453345

Damped-Core Quantum Monte Carlo Method: Effective Treatment for Large- Z Systems
journal, November 1988

  • Hammond, Brian L.; Reynolds, Peter J.; Lester, William A.
  • Physical Review Letters, Vol. 61, Issue 20
  • DOI: 10.1103/physrevlett.61.2312

Monte-Carlo solution of Schrödinger's equation
journal, February 1971


A random‐walk simulation of the Schrödinger equation: H + 3
journal, August 1975

  • Anderson, James B.
  • The Journal of Chemical Physics, Vol. 63, Issue 4
  • DOI: 10.1063/1.431514

Ab initio Quantum Monte Carlo Calculations of Spin Superexchange in Cuprates: The Benchmarking Case of Ca 2 CuO 3
journal, July 2014


Ground state of doped cuprates from first-principles quantum Monte Carlo calculations
journal, October 2015


Diffusion quantum Monte Carlo calculations of SrFeO 3 and LaFeO 3
journal, July 2017

  • Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R. C.
  • The Journal of Chemical Physics, Vol. 147, Issue 3
  • DOI: 10.1063/1.4994083

Quantum Many-Body Effects in Defective Transition-Metal-Oxide Superlattices
journal, October 2017

  • Santana, Juan A.; Mishra, Rohan; Krogel, Jaron T.
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00483

Competing collinear magnetic structures in superconducting FeSe by first-principles quantum Monte Carlo calculations
journal, July 2016


Quantum Monte Carlo Calculations of Structural Properties of FeO Under Pressure
journal, October 2008


Wave functions for quantum Monte Carlo calculations in solids: Orbitals from density functional theory with hybrid exchange-correlation functionals
journal, September 2010


Quantum Monte Carlo Studies of Transition Metal Oxides
journal, January 2010

  • Mitas, L.; Kolorenc, J.
  • Reviews in Mineralogy and Geochemistry, Vol. 71, Issue 1
  • DOI: 10.2138/rmg.2010.71.7

Phase stability and properties of manganese oxide polymorphs: Assessment and insights from diffusion Monte Carlo
journal, December 2015


Computation of the Correlated Metal-Insulator Transition in Vanadium Dioxide from First Principles
journal, April 2015


Phase stability of TiO 2 polymorphs from diffusion Quantum Monte Carlo
journal, November 2016


Diffusion Monte Carlo Method with Lattice Regularization
journal, September 2005


Beyond the locality approximation in the standard diffusion Monte Carlo method
journal, October 2006


Nonlocal pseudopotentials and diffusion Monte Carlo
journal, September 1991

  • Mitáš, Luboš; Shirley, Eric L.; Ceperley, David M.
  • The Journal of Chemical Physics, Vol. 95, Issue 5
  • DOI: 10.1063/1.460849

Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo
journal, April 2015

  • Santana, Juan A.; Krogel, Jaron T.; Kim, Jeongnim
  • The Journal of Chemical Physics, Vol. 142, Issue 16
  • DOI: 10.1063/1.4919242

Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: Case study of zinc selenide and zinc oxide
journal, December 2015

  • Yu, Jaehyung; Wagner, Lucas K.; Ertekin, Elif
  • The Journal of Chemical Physics, Vol. 143, Issue 22
  • DOI: 10.1063/1.4937421

Benchmarking the pseudopotential and fixed-node approximations in diffusion Monte Carlo calculations of molecules and solids
journal, March 2016


Novel pseudo-Hamiltonian for quantum Monte Carlo simulations
journal, May 1989


Cohesive energy of silicon by the Green’s-function Monte Carlo method
journal, November 1991


Local norm-conserving pseudo-Hamiltonians
journal, July 1995

  • Bosin, Andrea; Fiorentini, Vincenzo; Lastri, Andrea
  • Physical Review A, Vol. 52, Issue 1
  • DOI: 10.1103/physreva.52.236

Pseudopotentials with position-dependent electron masses
journal, December 1990


Role of forms of exchange and correlation used in generating pseudopotentials
journal, September 1990

  • Shirley, Eric L.; Martin, Richard M.; Bachelet, Giovanni B.
  • Physical Review B, Vol. 42, Issue 8
  • DOI: 10.1103/physrevb.42.5057

Relativistic effective potentials in quantum Monte Carlo calculations
journal, January 1987

  • Hurley, M. M.; Christiansen, P. A.
  • The Journal of Chemical Physics, Vol. 86, Issue 2
  • DOI: 10.1063/1.452294

Generation of pseudopotentials from correlated wave functions
journal, June 1994

  • Acioli, Paulo H.; Ceperley, David M.
  • The Journal of Chemical Physics, Vol. 100, Issue 11
  • DOI: 10.1063/1.466811

Pseudojellium model with an application to lithium clusters
journal, November 1993


Electronic properties of large metal clusters in jellium and pseudo-jellium models
journal, September 1995

  • Catara, F.; Chomaz, Ph.; Giai, N.
  • Zeitschrift f�r Physik D Atoms, Molecules and Clusters, Vol. 33, Issue 3
  • DOI: 10.1007/bf01437314

Self-consistent calculations in spherical metal clusters with uniformly averaged realistic pseudopotentials
journal, September 1995


Pseudopotential effects in alkali clusters by the pseudo-Hamiltonian technique
journal, November 1996


Alkali-metal plasmons, pseudopotentials, and optical sum rules
journal, May 1997


Plasmon response in K, Na and Li clusters: systematics using the separable random-phase-approximation with pseudo-Hamiltonians
journal, December 1998

  • Kleinig, W.; Nesterenko, V. O.; Reinhard, P. -G.
  • The European Physical Journal D - Atomic, Molecular and Optical Physics, Vol. 4, Issue 3
  • DOI: 10.1007/s100530050218

Pseudopotentials for quantum Monte Carlo studies of transition metal oxides
journal, February 2016


Ground State of Liquid He 4
journal, April 1965


Electronic structure quantum Monte Carlo
journal, April 2009


Applications of quantum Monte Carlo methods in condensed systems
journal, January 2011


Quantum Monte Carlo for Ab Initio calculations of energy-relevant materials
journal, August 2013

  • Wagner, Lucas K.
  • International Journal of Quantum Chemistry, Vol. 114, Issue 2
  • DOI: 10.1002/qua.24526

Noncovalent Interactions by Quantum Monte Carlo
journal, April 2016


The Theory of Complex Spectra
journal, November 1929


Many-Body Problem with Strong Forces
journal, June 1955


Helium at zero temperature with hard-sphere and other forces
journal, May 1974


A b i n i t i o effective core potentials: Reduction of all‐electron molecular structure calculations to calculations involving only valence electrons
journal, November 1976

  • Kahn, Luis R.; Baybutt, Paul; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 65, Issue 10
  • DOI: 10.1063/1.432900

Nexus: A modular workflow management system for quantum simulation codes
journal, January 2016


Inhomogeneous Electron Gas
journal, November 1964


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Toward reliable density functional methods without adjustable parameters: The PBE0 model
journal, April 1999

  • Adamo, Carlo; Barone, Vincenzo
  • The Journal of Chemical Physics, Vol. 110, Issue 13
  • DOI: 10.1063/1.478522

Efficient pseudopotentials for plane-wave calculations
journal, January 1991


QMCPACK : an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids
journal, April 2018

  • Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.
  • Journal of Physics: Condensed Matter, Vol. 30, Issue 19
  • DOI: 10.1088/1361-648X/aab9c3

Alleviation of the Fermion-Sign Problem by Optimization of Many-Body Wave Functions
journal, March 2007


The A   \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $^{3}\Phi $ \end{document} – X   \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $^{3}\Delta $ \end{document} System (γ Bands) of TiO: Laboratory and Sunspot Measurements
journal, May 1999

  • Ram, R. S.; Bernath, P. F.; Dulick, M.
  • The Astrophysical Journal Supplement Series, Vol. 122, Issue 1
  • DOI: 10.1086/313212

Isotope Shifts in the TiO B–X (1–0) Band
journal, August 2002

  • Amiot, C.; Luc, P.; Vetter, R.
  • Journal of Molecular Spectroscopy, Vol. 214, Issue 2
  • DOI: 10.1006/jmsp.2002.8592

The millimeter-wave spectrum of FeO in its X5Δi state (v = 0): a study of all five spin components
journal, July 1996


Mass selected anion-zero kinetic energy photoelectron spectroscopy (anion-ZEKE): Ground and low excited states of FeO
journal, August 1997

  • Drechsler, G.; Boesl, U.; Bä\Smann, C.
  • The Journal of Chemical Physics, Vol. 107, Issue 7
  • DOI: 10.1063/1.474622

A new generation of effective core potentials for correlated calculations
journal, December 2017

  • Bennett, M. Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani
  • The Journal of Chemical Physics, Vol. 147, Issue 22
  • DOI: 10.1063/1.4995643

A new generation of effective core potentials from correlated calculations: 2nd row elements
journal, September 2018

  • Bennett, M. Chandler; Wang, Guangming; Annaberdiyev, Abdulgani
  • The Journal of Chemical Physics, Vol. 149, Issue 10
  • DOI: 10.1063/1.5038135

A new generation of effective core potentials from correlated calculations: 3d transition metal series
journal, October 2018

  • Annaberdiyev, Abdulgani; Wang, Guangming; Melton, Cody A.
  • The Journal of Chemical Physics, Vol. 149, Issue 13
  • DOI: 10.1063/1.5040472

A new generation of effective core potentials from correlated calculations: 4s and 4p main group elements and first row additions
journal, October 2019

  • Wang, Guangming; Annaberdiyev, Abdulgani; Melton, Cody A.
  • The Journal of Chemical Physics, Vol. 151, Issue 14
  • DOI: 10.1063/1.5121006