DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design of Graphene/Ionic Liquid Composites for Carbon Capture

Abstract

Pore size is a crucial factor impacting gas separation in porous separation materials, but how to control the pore size to optimize the separation performance remains a challenge. Here, we propose a design of graphene/ionic liquid composites with tunable slit pore sizes, where cations and anions of ionic liquids are intercalated between graphene layers. By varying the sizes of the ions, we show from first-principles density functional theory calculations that the accessible pore size can be tuned from 3.4 to 6.0 Å. Grand canonical Monte Carlo simulations of gas sorption find that the composite materials possess high CO2 uptake at room temperature and 1 bar (up to ~8.5 mmol/g). Further simulations of the sorption of gas mixtures reveal that high CO2/N2 and CO2/CH4 adsorption selectivities can be obtained when the accessible pore size is <5 Å. This work suggests a new strategy to achieve tunable pore sizes via the graphene/IL composites for highly selective CO2/N2 and CO2/CH4 adsorption.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of California, Riverside, CA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1808178
Grant/Contract Number:  
AC05-00OR22725; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 13; Journal Issue: 15; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Wang, Song, Mahurin, Shannon M., Dai, Sheng, and Jiang, De-en. Design of Graphene/Ionic Liquid Composites for Carbon Capture. United States: N. p., 2021. Web. doi:10.1021/acsami.1c01242.
Wang, Song, Mahurin, Shannon M., Dai, Sheng, & Jiang, De-en. Design of Graphene/Ionic Liquid Composites for Carbon Capture. United States. https://doi.org/10.1021/acsami.1c01242
Wang, Song, Mahurin, Shannon M., Dai, Sheng, and Jiang, De-en. Thu . "Design of Graphene/Ionic Liquid Composites for Carbon Capture". United States. https://doi.org/10.1021/acsami.1c01242. https://www.osti.gov/servlets/purl/1808178.
@article{osti_1808178,
title = {Design of Graphene/Ionic Liquid Composites for Carbon Capture},
author = {Wang, Song and Mahurin, Shannon M. and Dai, Sheng and Jiang, De-en},
abstractNote = {Pore size is a crucial factor impacting gas separation in porous separation materials, but how to control the pore size to optimize the separation performance remains a challenge. Here, we propose a design of graphene/ionic liquid composites with tunable slit pore sizes, where cations and anions of ionic liquids are intercalated between graphene layers. By varying the sizes of the ions, we show from first-principles density functional theory calculations that the accessible pore size can be tuned from 3.4 to 6.0 Å. Grand canonical Monte Carlo simulations of gas sorption find that the composite materials possess high CO2 uptake at room temperature and 1 bar (up to ~8.5 mmol/g). Further simulations of the sorption of gas mixtures reveal that high CO2/N2 and CO2/CH4 adsorption selectivities can be obtained when the accessible pore size is <5 Å. This work suggests a new strategy to achieve tunable pore sizes via the graphene/IL composites for highly selective CO2/N2 and CO2/CH4 adsorption.},
doi = {10.1021/acsami.1c01242},
journal = {ACS Applied Materials and Interfaces},
number = 15,
volume = 13,
place = {United States},
year = {Thu Apr 08 00:00:00 EDT 2021},
month = {Thu Apr 08 00:00:00 EDT 2021}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Molecular Resolution in situ Imaging of Spontaneous Graphene Exfoliation
journal, August 2016

  • Elbourne, Aaron; McLean, Ben; Voïtchovsky, Kislon
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 16
  • DOI: 10.1021/acs.jpclett.6b01323

Post-Combustion CO2 Capture Using Solid Sorbents: A Review
journal, September 2011

  • Samanta, Arunkumar; Zhao, An; Shimizu, George K. H.
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 4, p. 1438-1463
  • DOI: 10.1021/ie200686q

Projector augmented-wave method
journal, December 1994


Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers
journal, January 2013


Recent advances in solid sorbents for CO 2 capture and new development trends
journal, January 2014

  • Wang, Junya; Huang, Liang; Yang, Ruoyan
  • Energy Environ. Sci., Vol. 7, Issue 11
  • DOI: 10.1039/C4EE01647E

Synthesis of Ionic Ultramicroporous Polymers for Selective Separation of Acetylene from Ethylene
journal, June 2020


Van der Waals density functionals applied to solids
journal, May 2011


Development Trends in Porous Adsorbents for Carbon Capture
journal, October 2015

  • Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi
  • Environmental Science & Technology, Vol. 49, Issue 21
  • DOI: 10.1021/acs.est.5b03149

Carbon Capture and Storage: How Green Can Black Be?
journal, September 2009


High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture
journal, February 2008


Biomass derived porous carbon for CO2 capture
journal, July 2019


Carbon dioxide capture in amorphous porous organic polymers
journal, January 2017

  • Wang, Wenjing; Zhou, Mi; Yuan, Daqiang
  • Journal of Materials Chemistry A, Vol. 5, Issue 4
  • DOI: 10.1039/C6TA09234A

MOFs for CO 2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity
journal, January 2013

  • Zhang, Zhijuan; Zhao, Yonggang; Gong, Qihan
  • Chem. Commun., Vol. 49, Issue 7
  • DOI: 10.1039/C2CC35561B

DREIDING: a generic force field for molecular simulations
journal, December 1990

  • Mayo, Stephen L.; Olafson, Barry D.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 94, Issue 26, p. 8897-8909
  • DOI: 10.1021/j100389a010

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Carbon Dioxide Capture: Prospects for New Materials
journal, July 2010

  • D'Alessandro, Deanna M.; Smit, Berend; Long, Jeffrey R.
  • Angewandte Chemie International Edition, Vol. 49, Issue 35, p. 6058-6082
  • DOI: 10.1002/anie.201000431

Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids
journal, January 2010

  • Wang, Xiqing; Fulvio, Pasquale F.; Baker, Gary A.
  • Chemical Communications, Vol. 46, Issue 25
  • DOI: 10.1039/c0cc00799d

Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption
journal, January 2011

  • Mason, Jarad A.; Sumida, Kenji; Herm, Zoey R.
  • Energy & Environmental Science, Vol. 4, Issue 8, p. 3030-3040
  • DOI: 10.1039/c1ee01720a

Ion-Gated Gas Separation through Porous Graphene
journal, February 2017


Metal-Organic Frameworks for Separation
journal, March 2018

  • Zhao, Xiang; Wang, Yanxiang; Li, Dong-Sheng
  • Advanced Materials, Vol. 30, Issue 37
  • DOI: 10.1002/adma.201705189

Pore Space Partition in Metal–Organic Frameworks
journal, January 2017


Efficient Implementation of a van der Waals Density Functional: Application to Double-Wall Carbon Nanotubes
journal, August 2009


Carbon capture with ionic liquids: overview and progress
journal, January 2012

  • Zhang, Xiangping; Zhang, Xiaochun; Dong, Haifeng
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee21152a

Layer-by-Layer Films of Graphene and Ionic Liquids for Highly Selective Gas Sensing
journal, November 2010

  • Ji, Qingmin; Honma, Itaru; Paek, Seung-Min
  • Angewandte Chemie International Edition, Vol. 49, Issue 50
  • DOI: 10.1002/anie.201004929

Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture
journal, October 2011

  • Bae, Youn-Sang; Snurr, Randall Q.
  • Angewandte Chemie International Edition, Vol. 50, Issue 49
  • DOI: 10.1002/anie.201101891

Covalent Organic Frameworks for CO 2 Capture
journal, February 2016


Anion Pillared Metal–Organic Framework Embedded with Molecular Rotors for Size-Selective Capture of CO 2 from CH 4 and N 2
journal, January 2019


Carbon capture and storage update
journal, January 2014

  • Boot-Handford, Matthew E.; Abanades, Juan C.; Anthony, Edward J.
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42350F

Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture
journal, June 2014

  • Shekhah, Osama; Belmabkhout, Youssef; Chen, Zhijie
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5228

When graphene meets ionic liquids: a good match for the design of functional materials
journal, January 2021

  • Aldroubi, Soha; Brun, Nicolas; Bou Malham, Ibrahim
  • Nanoscale, Vol. 13, Issue 5
  • DOI: 10.1039/D0NR06871C

Direct Capture of CO2 from Ambient Air
journal, August 2016

  • Sanz-Pérez, Eloy S.; Murdock, Christopher R.; Didas, Stephanie A.
  • Chemical Reviews, Vol. 116, Issue 19, p. 11840-11876
  • DOI: 10.1021/acs.chemrev.6b00173

Nanoporous Fluorinated Metal–Organic Framework-Based Membranes for CO 2 Capture
journal, June 2020

  • Chernikova, Valeriya; Shekhah, Osama; Belmabkhout, Youssef
  • ACS Applied Nano Materials, Vol. 3, Issue 7
  • DOI: 10.1021/acsanm.0c00909

Optimal Size of a Cylindrical Pore for Post-Combustion CO 2 Capture
journal, September 2017

  • Wang, Song; Tian, Ziqi; Dai, Sheng
  • The Journal of Physical Chemistry C, Vol. 121, Issue 40
  • DOI: 10.1021/acs.jpcc.7b05516