DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry

Abstract

Advances in nanophotonics, quantum optics, and low-dimensional materials have enabled precise control of light–matter interactions down to the nanoscale. Combining concepts from each of these fields, there is now an opportunity to create and manipulate photonic matter via strong coupling of molecules to the electromagnetic field. Toward this goal, here we demonstrate a first principles framework to calculate polaritonic excited-state potential-energy surfaces, transition dipole moments, and transition densities for strongly coupled light–matter systems. In particular, we demonstrate the applicability of our methodology by calculating the polaritonic excited-state manifold of a formaldehyde molecule strongly coupled to an optical cavity. This proof-of-concept calculation shows how strong coupling can be exploited to alter photochemical reaction pathways by influencing avoided crossings with tuning of the cavity frequency and coupling strength. Therefore, by introducing an ab initio method to calculate excited-state potential-energy surfaces, our work opens a new avenue for the field of polaritonic chemistry.

Authors:
ORCiD logo [1]; ORCiD logo [2]
  1. Harvard University, Cambridge, Massachusetts (United States). John A. Paulson School of Engineering and Applied Sciences; Flatiron Institute, New York (United States). Center for Computational Quantum Physics
  2. Harvard University, Cambridge, Massachusetts (United States). John A. Paulson School of Engineering and Applied Sciences
Publication Date:
Research Org.:
Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); German Research Foundation (DFG); USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1803588
Alternate Identifier(s):
OSTI ID: 1657878
Grant/Contract Number:  
SC0019140; FL997/1-1
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 153; Journal Issue: 9; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Photochemical reactions; Quantum optics; Optical resonators; Ab-initio methods; Nano optics; Transition moment; Potential energy surfaces; Electromagnetism; Time dependent density functional theory; Photon scattering

Citation Formats

Flick, Johannes, and Narang, Prineha. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry. United States: N. p., 2020. Web. doi:10.1063/5.0021033.
Flick, Johannes, & Narang, Prineha. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry. United States. https://doi.org/10.1063/5.0021033
Flick, Johannes, and Narang, Prineha. Fri . "Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry". United States. https://doi.org/10.1063/5.0021033. https://www.osti.gov/servlets/purl/1803588.
@article{osti_1803588,
title = {Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry},
author = {Flick, Johannes and Narang, Prineha},
abstractNote = {Advances in nanophotonics, quantum optics, and low-dimensional materials have enabled precise control of light–matter interactions down to the nanoscale. Combining concepts from each of these fields, there is now an opportunity to create and manipulate photonic matter via strong coupling of molecules to the electromagnetic field. Toward this goal, here we demonstrate a first principles framework to calculate polaritonic excited-state potential-energy surfaces, transition dipole moments, and transition densities for strongly coupled light–matter systems. In particular, we demonstrate the applicability of our methodology by calculating the polaritonic excited-state manifold of a formaldehyde molecule strongly coupled to an optical cavity. This proof-of-concept calculation shows how strong coupling can be exploited to alter photochemical reaction pathways by influencing avoided crossings with tuning of the cavity frequency and coupling strength. Therefore, by introducing an ab initio method to calculate excited-state potential-energy surfaces, our work opens a new avenue for the field of polaritonic chemistry.},
doi = {10.1063/5.0021033},
journal = {Journal of Chemical Physics},
number = 9,
volume = 153,
place = {United States},
year = {Fri Sep 04 00:00:00 EDT 2020},
month = {Fri Sep 04 00:00:00 EDT 2020}
}

Works referenced in this record:

Light-matter interactions via the exact factorization approach
journal, August 2018

  • Hoffmann, Norah M.; Appel, Heiko; Rubio, Angel
  • The European Physical Journal B, Vol. 91, Issue 8
  • DOI: 10.1140/epjb/e2018-90177-6

Relevance of the Quadratic Diamagnetic and Self-Polarization Terms in Cavity Quantum Electrodynamics
journal, February 2020


Can Ultrastrong Coupling Change Ground-State Chemical Reactions?
journal, November 2017

  • Martínez-Martínez, Luis A.; Ribeiro, Raphael F.; Campos-González-Angulo, Jorge
  • ACS Photonics, Vol. 5, Issue 1
  • DOI: 10.1021/acsphotonics.7b00610

Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Exact Potential Energy Surface for Molecules in Cavities
journal, August 2019


Selective manipulation of electronically excited states through strong light–matter interactions
journal, June 2018


Linear response time-dependent density functional theory without unoccupied states: The Kohn-Sham-Sternheimer scheme revisited
journal, July 2018

  • Hofmann, Fabian; Schelter, Ingo; Kümmel, Stephan
  • The Journal of Chemical Physics, Vol. 149, Issue 2
  • DOI: 10.1063/1.5030652

Theoretical predictions for hot-carrier generation from surface plasmon decay
journal, December 2014

  • Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6788

Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas
journal, July 2018

  • Munkhbat, Battulga; Wersäll, Martin; Baranov, Denis G.
  • Science Advances, Vol. 4, Issue 7
  • DOI: 10.1126/sciadv.aas9552

Suppressing photochemical reactions with quantized light fields
journal, December 2016

  • Galego, Javier; Garcia-Vidal, Francisco J.; Feist, Johannes
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13841

Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry
journal, March 2017

  • Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 12
  • DOI: 10.1073/pnas.1615509114

octopus: a tool for the application of time-dependent density functional theory
journal, September 2006

  • Castro, Alberto; Appel, Heiko; Oliveira, Micael
  • physica status solidi (b), Vol. 243, Issue 11
  • DOI: 10.1002/pssb.200642067

Novel photochemistry of molecular polaritons in optical cavities
journal, January 2016

  • Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul
  • Faraday Discussions, Vol. 194
  • DOI: 10.1039/c6fd00095a

Density-functional exchange-energy approximation with correct asymptotic behavior
journal, September 1988


Light–Matter Response in Nonrelativistic Quantum Electrodynamics
journal, September 2019


Polaritonic Chemistry with Organic Molecules
journal, October 2017


Cavity Femtochemistry: Manipulating Nonadiabatic Dynamics at Avoided Crossings
journal, May 2016

  • Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 11
  • DOI: 10.1021/acs.jpclett.6b00864

Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature
journal, November 2017

  • Kleemann, Marie-Elena; Chikkaraddy, Rohit; Alexeev, Evgeny M.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-01398-3

Modifying Chemical Landscapes by Coupling to Vacuum Fields
journal, January 2012

  • Hutchison, James A.; Schwartz, Tal; Genet, Cyriaque
  • Angewandte Chemie International Edition, Vol. 51, Issue 7
  • DOI: 10.1002/anie.201107033

Manipulating azobenzene photoisomerization through strong light–molecule coupling
journal, November 2018


Spectroscopy of Formaldehyde. 1. Ab Initio Studies on Singlet Valence and Rydberg States of Planar H2CO, with Emphasis on 1(.pi.,.pi.) and 1(.sigma.,.pi.)
journal, May 1995

  • Hachey, Michel R. J.; Bruna, Pablo J.; Grein, Friedrich
  • The Journal of Physical Chemistry, Vol. 99, Issue 20
  • DOI: 10.1021/j100020a031

Single-molecule strong coupling at room temperature in plasmonic nanocavities
journal, June 2016

  • Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix
  • Nature, Vol. 535, Issue 7610
  • DOI: 10.1038/nature17974

Shedding light on correlated electron–photon states using the exact factorization
journal, August 2018


Excited-state potential energy curves from time-dependent density-functional theory: A cross section of formaldehyde's1A1 manifold
journal, January 1998


Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems
journal, January 2015

  • Andrade, Xavier; Strubbe, David; De Giovannini, Umberto
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 47
  • DOI: 10.1039/c5cp00351b

The important role of 1(π, π∗) in the UV absorption spectrum of formaldehyde, as shown by ab initio MR CI studies
journal, June 1996


Quantum photonics model for nonclassical light generation using integrated nanoplasmonic cavity-emitter systems
journal, June 2018


Light–matter interaction in the long-wavelength limit: no ground-state without dipole self-energy
journal, January 2018

  • Rokaj, Vasil; Welakuh, Davis M.; Ruggenthaler, Michael
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 51, Issue 3
  • DOI: 10.1088/1361-6455/aa9c99

Principles of Nano-Optics
book, January 2006


Perspective on "Zur Quantentheorie der Molekeln"
journal, February 2000

  • Tully, John C.
  • Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), Vol. 103, Issue 3-4
  • DOI: 10.1007/s002149900049

Dynamic polarizabilities and excitation spectra from a molecular implementation of time‐dependent density‐functional response theory: N 2 as a case study
journal, April 1996

  • Jamorski, Christine; Casida, Mark E.; Salahub, Dennis R.
  • The Journal of Chemical Physics, Vol. 104, Issue 13
  • DOI: 10.1063/1.471140

Cavity-Induced Modifications of Molecular Structure in the Strong-Coupling Regime
journal, November 2015

  • Galego, Javier; Garcia-Vidal, Francisco J.; Feist, Johannes
  • Physical Review X, Vol. 5, Issue 4
  • DOI: 10.1103/physrevx.5.041022

Ab Initio Study of the VUV-Induced Multistate Photodynamics of Formaldehyde
journal, November 2010

  • Gómez-Carrasco, S.; Müller, T.; Köppel, H.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 43
  • DOI: 10.1021/jp106777z

The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table
journal, May 2018


Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials
journal, January 2000

  • Schipper, P. R. T.; Gritsenko, O. V.; van Gisbergen, S. J. A.
  • The Journal of Chemical Physics, Vol. 112, Issue 3
  • DOI: 10.1063/1.480688

Resonant catalysis of thermally activated chemical reactions with vibrational polaritons
journal, October 2019

  • Campos-Gonzalez-Angulo, Jorge A.; Ribeiro, Raphael F.; Yuen-Zhou, Joel
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-12636-1

Towards properties on demand in quantum materials
journal, October 2017

  • Basov, D. N.; Averitt, R. D.; Hsieh, D.
  • Nature Materials, Vol. 16, Issue 11
  • DOI: 10.1038/nmat5017

Progress in Time-Dependent Density-Functional Theory
journal, May 2012


Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material
journal, April 2017


Single-molecule optomechanics in “picocavities”
journal, November 2016

  • Benz, Felix; Schmidt, Mikolaj K.; Dreismann, Alexander
  • Science, Vol. 354, Issue 6313
  • DOI: 10.1126/science.aah5243

From a quantum-electrodynamical light–matter description to novel spectroscopies
journal, March 2018

  • Ruggenthaler, Michael; Tancogne-Dejean, Nicolas; Flick, Johannes
  • Nature Reviews Chemistry, Vol. 2, Issue 3
  • DOI: 10.1038/s41570-018-0118

Investigating New Reactivities Enabled by Polariton Photochemistry
journal, August 2019


Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
journal, March 2020

  • Tancogne-Dejean, Nicolas; Oliveira, Micael J. T.; Andrade, Xavier
  • The Journal of Chemical Physics, Vol. 152, Issue 12
  • DOI: 10.1063/1.5142502

Zur Quantentheorie der Molekeln
journal, January 1927


Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems
journal, November 2018


Hybrid Light–Matter States in a Molecular and Material Science Perspective
journal, October 2016


Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode
journal, November 2014

  • Coles, David M.; Yang, Yanshen; Wang, Yaya
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6561

Direct calculation of exciton binding energies with time-dependent density-functional theory
journal, May 2013


Polaritonic coupled-cluster theory
journal, June 2020


Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule
journal, May 2018


Non-adiabatic dynamics of molecules in optical cavities
journal, February 2016

  • Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
  • The Journal of Chemical Physics, Vol. 144, Issue 5
  • DOI: 10.1063/1.4941053

Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity
journal, March 2019

  • Ojambati, Oluwafemi S.; Chikkaraddy, Rohit; Deacon, William D.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-08611-5

Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space
journal, December 2015

  • Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 50
  • DOI: 10.1073/pnas.1518224112

Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State
journal, December 2017


Nonadiabatic quantum dynamics without potential energy surfaces
journal, February 2019


Cavity Born–Oppenheimer Approximation for Correlated Electron–Nuclear-Photon Systems
journal, March 2017

  • Flick, Johannes; Appel, Heiko; Ruggenthaler, Michael
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 4
  • DOI: 10.1021/acs.jctc.6b01126

Tilting a ground-state reactivity landscape by vibrational strong coupling
journal, February 2019


Strong light-matter coupling in quantum chemistry and quantum photonics
journal, September 2018


Density-Functional Theory for Time-Dependent Systems
journal, March 1984


Strong Coupling between Surface Plasmon Polaritons and Molecular Vibrations
journal, March 2017


Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry
journal, August 2017

  • Luk, Hoi Ling; Feist, Johannes; Toppari, J. Jussi
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 9
  • DOI: 10.1021/acs.jctc.7b00388

Works referencing / citing this record:

Defect polaritons from first principles
preprint, January 2021


Cavity-modulated ionization potentials and electron affinities from quantum electrodynamics coupled-cluster theory
journal, March 2021

  • DePrince, A. Eugene
  • The Journal of Chemical Physics, Vol. 154, Issue 9
  • DOI: 10.1063/5.0038748

Collective strong coupling in a plasmonic nanocavity
journal, February 2021

  • Varguet, H.; Díaz-Valles, A. A.; Guérin, S.
  • The Journal of Chemical Physics, Vol. 154, Issue 8
  • DOI: 10.1063/5.0033531