DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energetics and mechanisms for the acetonyl radical + O2 reaction: An important system for atmospheric and combustion chemistry

Abstract

The acetonyl radical (•CH2COCH3) is relevant to atmospheric and combustion chemistry due to its prevalence in many important reaction mechanisms. One such reaction mechanism is the decomposition of Criegee intermediates in the atmosphere that can produce acetonyl radical and OH. In order to understand the fate of the acetonyl radical in these environments and to create more accurate kinetics models, we have examined the reaction system of the acetonyl radical with O2 using highly reliable theoretical methods. Structures were optimized using coupled cluster theory with singles, doubles, and perturbative triples [CCSD(T)] with an atomic natural orbital (ANO0) basis set. Energetics were computed to chemical accuracy using the focal point approach involving perturbative treatment of quadruple excitations [CCSDT(Q)] and basis sets as large as cc-pV5Z. The addition of O2 to the acetonyl radical produces the acetonylperoxy radical, and multireference computations on this reaction suggest it to be barrierless. Additionally, no submerged pathways were found for the unimolecular isomerization of the acetonylperoxy radical. Besides dissociation to reactants, the lowest energy pathway available for the acetonylperoxy radical is a 1-5 H shift from the methyl group to the peroxy group through a transition state that is 3.3 kcal mol-1 higher in energy thanmore » acetonyl radical + O2. The ultimate products from this pathway are the enol tautomer of the acetonyl radical along with O2. Multiple pathways that lead to OH formation are considered; however, all of these pathways are predicted to be energetically inaccessible, except at high temperatures.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Georgia, Athens, GA (United States). Center for Computational Quantum Chemistry
Publication Date:
Research Org.:
Univ. of Georgia, Athens, GA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1803414
Alternate Identifier(s):
OSTI ID: 1605622
Grant/Contract Number:  
SC0018412
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 152; Journal Issue: 11; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; Physics; Combustion; Chemical compounds; Atmospheric chemistry; Free radicals; Energy economics; Correlation-consistent basis sets; Transition state; Isomerization; Coupled-cluster methods; Reaction mechanisms

Citation Formats

Weidman, Jared D., Turney, Justin M., and Schaefer, Henry F. Energetics and mechanisms for the acetonyl radical + O2 reaction: An important system for atmospheric and combustion chemistry. United States: N. p., 2020. Web. doi:10.1063/1.5141859.
Weidman, Jared D., Turney, Justin M., & Schaefer, Henry F. Energetics and mechanisms for the acetonyl radical + O2 reaction: An important system for atmospheric and combustion chemistry. United States. https://doi.org/10.1063/1.5141859
Weidman, Jared D., Turney, Justin M., and Schaefer, Henry F. Sat . "Energetics and mechanisms for the acetonyl radical + O2 reaction: An important system for atmospheric and combustion chemistry". United States. https://doi.org/10.1063/1.5141859. https://www.osti.gov/servlets/purl/1803414.
@article{osti_1803414,
title = {Energetics and mechanisms for the acetonyl radical + O2 reaction: An important system for atmospheric and combustion chemistry},
author = {Weidman, Jared D. and Turney, Justin M. and Schaefer, Henry F.},
abstractNote = {The acetonyl radical (•CH2COCH3) is relevant to atmospheric and combustion chemistry due to its prevalence in many important reaction mechanisms. One such reaction mechanism is the decomposition of Criegee intermediates in the atmosphere that can produce acetonyl radical and OH. In order to understand the fate of the acetonyl radical in these environments and to create more accurate kinetics models, we have examined the reaction system of the acetonyl radical with O2 using highly reliable theoretical methods. Structures were optimized using coupled cluster theory with singles, doubles, and perturbative triples [CCSD(T)] with an atomic natural orbital (ANO0) basis set. Energetics were computed to chemical accuracy using the focal point approach involving perturbative treatment of quadruple excitations [CCSDT(Q)] and basis sets as large as cc-pV5Z. The addition of O2 to the acetonyl radical produces the acetonylperoxy radical, and multireference computations on this reaction suggest it to be barrierless. Additionally, no submerged pathways were found for the unimolecular isomerization of the acetonylperoxy radical. Besides dissociation to reactants, the lowest energy pathway available for the acetonylperoxy radical is a 1-5 H shift from the methyl group to the peroxy group through a transition state that is 3.3 kcal mol-1 higher in energy than acetonyl radical + O2. The ultimate products from this pathway are the enol tautomer of the acetonyl radical along with O2. Multiple pathways that lead to OH formation are considered; however, all of these pathways are predicted to be energetically inaccessible, except at high temperatures.},
doi = {10.1063/1.5141859},
journal = {Journal of Chemical Physics},
number = 11,
volume = 152,
place = {United States},
year = {Sat Mar 21 00:00:00 EDT 2020},
month = {Sat Mar 21 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Rate Coefficients for Reaction of OH with Acetone between 202 and 395 K
journal, March 2000

  • Wollenhaupt, M.; Carl, S. A.; Horowitz, A.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 12
  • DOI: 10.1021/jp993738f

Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability
journal, June 2017

  • Parrish, Robert M.; Burns, Lori A.; Smith, Daniel G. A.
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 7
  • DOI: 10.1021/acs.jctc.7b00174

Ultraviolet absorption spectra and kinetics of acetonyl and acetonylperoxy radicals
journal, October 1990


Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance
journal, January 2012

  • Orlando, John J.; Tyndall, Geoffrey S.
  • Chemical Society Reviews, Vol. 41, Issue 19
  • DOI: 10.1039/c2cs35166h

Proton Affinity and Heat of Formation of Vinyloxy [CH2CHO]. and Acetonyl [CH2COCH3]. Radicals
journal, April 2001


The ORCA program system: The ORCA program system
journal, June 2011

  • Neese, Frank
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 1
  • DOI: 10.1002/wcms.81

Kinetics of the gas-phase reaction of acetone with iodine: Heat of formation and stabilization energy of the acetonyl radical
journal, January 1970

  • Solly, R. K.; Golden, D. M.; Benson, S. W.
  • International Journal of Chemical Kinetics, Vol. 2, Issue 1
  • DOI: 10.1002/kin.550020103

In pursuit of the ab initio limit for conformational energy prototypes
journal, June 1998

  • Császár, Attila G.; Allen, Wesley D.; Schaefer, Henry F.
  • The Journal of Chemical Physics, Vol. 108, Issue 23
  • DOI: 10.1063/1.476449

Crossed Molecular Beams and Quasiclassical Trajectory Surface Hopping Studies of the Multichannel Nonadiabatic O( 3 P) + Ethylene Reaction at High Collision Energy
journal, October 2015

  • Balucani, Nadia; Leonori, Francesca; Casavecchia, Piergiorgio
  • The Journal of Physical Chemistry A, Vol. 119, Issue 50
  • DOI: 10.1021/acs.jpca.5b07979

Laser-Induced Fluorescence of Methyl Substituted Vinoxy Radicals and Reactions of Oxygen Atoms with Olefins
journal, October 1998

  • Washida, Nobuaki; Inomata, Satoshi; Furubayashi, Masashi
  • The Journal of Physical Chemistry A, Vol. 102, Issue 41
  • DOI: 10.1021/jp9822586

Characterization of the 2-methylvinoxy radical + O 2 reaction: A focal point analysis and composite multireference study
journal, September 2019

  • Davis, Matthew M.; Weidman, Jared D.; Abbott, Adam S.
  • The Journal of Chemical Physics, Vol. 151, Issue 12
  • DOI: 10.1063/1.5113800

Radical Product Yields from the Ozonolysis of Short Chain Alkenes under Atmospheric Boundary Layer Conditions
journal, November 2013

  • Alam, Mohammed S.; Rickard, Andrew R.; Camredon, Marie
  • The Journal of Physical Chemistry A, Vol. 117, Issue 47
  • DOI: 10.1021/jp408745h

An efficient internally contracted multiconfiguration–reference configuration interaction method
journal, November 1988

  • Werner, Hans‐Joachim; Knowles, Peter J.
  • The Journal of Chemical Physics, Vol. 89, Issue 9
  • DOI: 10.1063/1.455556

Flash photolysis study of the UV spectrum and kinetics of reactions of the acetonylperoxy radical
journal, January 1993

  • Bridier, Isabelle; Veyret, Bernard; Lesclaux, Robert
  • Journal of the Chemical Society, Faraday Transactions, Vol. 89, Issue 16
  • DOI: 10.1039/ft9938902993

Investigation of the radical product channel of the CH3C(O)CH2O2 + HO2 reaction in the gas phase
journal, January 2008

  • Jenkin, M. E.; Hurley, M. D.; Wallington, T. J.
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 29
  • DOI: 10.1039/b802898b

Kinetic Study on Reactions of 1- and 2-Methylvinoxy Radicals with O 2
journal, January 2001

  • Oguchi, Tatsuo; Miyoshi, Akira; Koshi, Mitsuo
  • The Journal of Physical Chemistry A, Vol. 105, Issue 2
  • DOI: 10.1021/jp001826q

Kinetics of elementary reactions in low-temperature autoignition chemistry
journal, August 2011

  • Zádor, Judit; Taatjes, Craig A.; Fernandes, Ravi X.
  • Progress in Energy and Combustion Science, Vol. 37, Issue 4
  • DOI: 10.1016/j.pecs.2010.06.006

Thermochemistry of Acetonyl and Related Radicals
journal, December 2006

  • El-Nahas, Ahmed M.; Bozzelli, Joseph W.; Simmie, John M.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 50
  • DOI: 10.1021/jp065003y

High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere
journal, November 1995

  • Singh, Hanwant B.; Kanakidou, M.; Crutzen, P. J.
  • Nature, Vol. 378, Issue 6552
  • DOI: 10.1038/378050a0

A second order multiconfiguration SCF procedure with optimum convergence
journal, June 1985

  • Werner, Hans‐Joachim; Knowles, Peter J.
  • The Journal of Chemical Physics, Vol. 82, Issue 11
  • DOI: 10.1063/1.448627

Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes
journal, March 2018


Rate Coefficients and Equilibrium Constant for the CH 2 CHO + O 2 Reaction System
journal, March 2006

  • Delbos, Eric; Fittschen, Christa; Hippler, Horst
  • The Journal of Physical Chemistry A, Vol. 110, Issue 9
  • DOI: 10.1021/jp054697s

The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere
journal, January 2008

  • Johnson, David; Marston, George
  • Chemical Society Reviews, Vol. 37, Issue 4
  • DOI: 10.1039/b704260b

Experimental and Theoretical Studies on the Dynamics of the O( 3 P) + Propene Reaction: Primary Products, Branching Ratios, and Role of Intersystem Crossing
journal, March 2015

  • Leonori, Francesca; Balucani, Nadia; Nevrly, Vaclav
  • The Journal of Physical Chemistry C, Vol. 119, Issue 26
  • DOI: 10.1021/jp512670y

Theoretical enthalpy of formation of the acetonyl radical
journal, May 2003

  • Espinosa-Garcı́a, Joaquı́n; Márquez, Antonio; Dóbé, Sándor
  • Chemical Physics Letters, Vol. 373, Issue 3-4
  • DOI: 10.1016/s0009-2614(03)00551-7

Reactions of O( 3 P) with Alkenes:  H, CH 2 CHO, CO, and OH Channels
journal, January 1998

  • Quandt, Robert; Min, Zhiyuan; Wang, Xuebin
  • The Journal of Physical Chemistry A, Vol. 102, Issue 1
  • DOI: 10.1021/jp9730611

Propargyl + O 2 Reaction in Helium Droplets: Entrance Channel Barrier or Not?
journal, September 2013

  • Moradi, Christopher P.; Morrison, Alexander M.; Klippenstein, Stephen J.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 50
  • DOI: 10.1021/jp407652f

An efficient method for the evaluation of coupling coefficients in configuration interaction calculations
journal, April 1988


An efficient second-order MC SCF method for long configuration expansions
journal, April 1985


Thermochemistry and kinetics of acetonylperoxy radical isomerisation and decomposition: a quantum chemistry and CVT/SCT approach
journal, January 2008

  • El-Nahas, Ahmed M.; Simmie, John M.; Navarro, Maria V.
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 47
  • DOI: 10.1039/b810853f

Erratum: “Coupled cluster theory for high spin, open shell reference wave functions” [ J. Chem. Phys. 99 , 5219 (1993)]
journal, February 2000

  • Knowles, Peter J.; Hampel, Claudia; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 112, Issue 6
  • DOI: 10.1063/1.480886

High-level theoretical characterization of the vinoxy radical ( CH 2 CHO) + O 2 reaction
journal, May 2018

  • Weidman, Jared D.; Allen, Ryan T.; Moore, Kevin B.
  • The Journal of Chemical Physics, Vol. 148, Issue 18
  • DOI: 10.1063/1.5026295

The heat of formation of NCO
journal, September 1993

  • East, Allan L. L.; Allen, Wesley D.
  • The Journal of Chemical Physics, Vol. 99, Issue 6
  • DOI: 10.1063/1.466062

Atmospheric chemistry of acetone: Kinetic study of the CH3C(O)CH2O2+NO/NO2 reactions and decomposition of CH3C(O)CH2O2NO2
journal, January 1998


General atomic and molecular electronic structure system
journal, November 1993

  • Schmidt, Michael W.; Baldridge, Kim K.; Boatz, Jerry A.
  • Journal of Computational Chemistry, Vol. 14, Issue 11, p. 1347-1363
  • DOI: 10.1002/jcc.540141112

Multireference perturbation theory for large restricted and selected active space reference wave functions
journal, April 2000

  • Celani, Paolo; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 112, Issue 13
  • DOI: 10.1063/1.481132

Laser spectrometry and kinetics of selected elementary reactions of the acetonyl radical
journal, January 2004

  • Imrik, Krisztina; Farkas, Edit; Vasvári, Gábor
  • Phys. Chem. Chem. Phys., Vol. 6, Issue 15
  • DOI: 10.1039/b404889j

A Product Yield Study of the Reaction of HO 2 Radicals with Ethyl Peroxy (C 2 H 5 O 2 ), Acetyl Peroxy (CH 3 C(O)O 2 ), and Acetonyl Peroxy (CH 3 C(O)CH 2 O 2 ) Radicals
journal, July 2004

  • Hasson, Alam S.; Tyndall, Geoffrey S.; Orlando, John J.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 28
  • DOI: 10.1021/jp048873t

Experimental and theoretical studies of the ethyl + oxygen reaction kinetics
journal, March 1990

  • Wagner, Albert F.; Slagle, Irene R.; Sarzynski, Dariusz.
  • The Journal of Physical Chemistry, Vol. 94, Issue 5
  • DOI: 10.1021/j100368a026

General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms
journal, April 1987

  • Almlöf, Jan; Taylor, Peter R.
  • The Journal of Chemical Physics, Vol. 86, Issue 7
  • DOI: 10.1063/1.451917

Study of OH Reactions at High Pressures by Excimer Laser Photolysis - Dye Laser Fluorescence
journal, March 1985

  • Schmidt, V.; Zhu, G. Y.; Becker, K. H.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 89, Issue 3
  • DOI: 10.1002/bbpc.19850890337

Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH)
journal, February 2015


Quantum Chemical and Master Equation Simulations of the Oxidation and Isomerization of Vinoxy Radicals
journal, March 2005

  • Kuwata, Keith T.; Hasson, Alam S.; Dickinson, Ray V.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 11
  • DOI: 10.1021/jp047299i

Kinetics of the gas-phase thermal bromination of acetone. Heat of formation and stabilization energy of the acetonyl radical
journal, September 1970

  • King, Keith D.; Golden, David M.; Benson, Sidney W.
  • Journal of the American Chemical Society, Vol. 92, Issue 19
  • DOI: 10.1021/ja00722a001

Direct detection of OH formation in the reactions of HO 2 with CH 3 C(O)O 2 and other substituted peroxy radicals
journal, January 2008


Establishment of the C2H5+O2 reaction mechanism: A combustion archetype
journal, February 2008

  • Wilke, Jeremiah J.; Allen, Wesley D.; Schaefer, Henry F.
  • The Journal of Chemical Physics, Vol. 128, Issue 7
  • DOI: 10.1063/1.2827133

Branching Ratio For The Self-Reaction Of Acetonyl Peroxy Radicals
journal, August 2003

  • Emricha, Martin; Warneck, Peter
  • Zeitschrift für Naturforschung A, Vol. 58, Issue 7-8
  • DOI: 10.1515/zna-2003-7-807

Reaction and complex formation between OH radical and acetone
journal, January 2001

  • Vasvári, Gábor; Szilágyi, István; Bencsura, Ákos
  • Physical Chemistry Chemical Physics, Vol. 3, Issue 4
  • DOI: 10.1039/b009601f

Kinetics and mechanism of the reactions of CH3CO and CH3C(O)CH2 radicals with O2. Low-pressure discharge flow experiments and quantum chemical computations
journal, January 2007

  • Kovács, Gergely; Zádor, Judit; Farkas, Edit
  • Physical Chemistry Chemical Physics, Vol. 9, Issue 31
  • DOI: 10.1039/b706216h

Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory
journal, December 2015

  • Verma, Prakash; Derricotte, Wallace D.; Evangelista, Francesco A.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 1
  • DOI: 10.1021/acs.jctc.5b00817

Analytical energy gradients for internally contracted second-order multireference perturbation theory
journal, September 2003

  • Celani, Paolo; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 119, Issue 10
  • DOI: 10.1063/1.1597672

The Stability of α-Hydroperoxyalkyl Radicals
journal, November 2016

  • Anglada, Josep M.; Crehuet, Ramon; Francisco, Joseph S.
  • Chemistry - A European Journal, Vol. 22, Issue 50
  • DOI: 10.1002/chem.201604499

Atmospheric chemistry of small organic peroxy radicals
journal, June 2001

  • Tyndall, G. S.; Cox, R. A.; Granier, C.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D11
  • DOI: 10.1029/2000jd900746

Rate Constants and Vinoxy Product Yield in the Reaction OH + Ethylene Oxide
journal, December 1984

  • Lorenz, K.; Zellner, R.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 88, Issue 12
  • DOI: 10.1002/bbpc.198400053

Theoretical studies of atmospheric reaction mechanisms in the troposphere
journal, January 2012

  • Vereecken, Luc; Francisco, Joseph S.
  • Chemical Society Reviews, Vol. 41, Issue 19
  • DOI: 10.1039/c2cs35070j

Role of O 2 + QOOH in Low-Temperature Ignition of Propane. 1. Temperature and Pressure Dependent Rate Coefficients
journal, March 2012

  • Goldsmith, C. Franklin; Green, William H.; Klippenstein, Stephen J.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 13
  • DOI: 10.1021/jp210722w

Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere
journal, January 1998


Basis-set convergence of correlated calculations on water
journal, June 1997

  • Helgaker, Trygve; Klopper, Wim; Koch, Henrik
  • The Journal of Chemical Physics, Vol. 106, Issue 23
  • DOI: 10.1063/1.473863

Rate and Equilibrium Constant of the Reaction of 1-Methylvinoxy Radicals with O 2 :  CH 3 COCH 2 + O 2 ↔ CH 3 COCH 2 O 2
journal, June 2006

  • Hassouna, Melynda; Delbos, Eric; Devolder, Pascal
  • The Journal of Physical Chemistry A, Vol. 110, Issue 21
  • DOI: 10.1021/jp0558270

Laser Photolysis - LIF Kinetic Studies of the Reactions of CH3O and CH2CHO with O2 between 300 and 500 K
journal, March 1985

  • Lorenz, K.; Rhasa, D.; Zellner, R.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 89, Issue 3
  • DOI: 10.1002/bbpc.19850890346

The multichannel n -propyl + O 2 reaction surface: Definitive theory on a model hydrocarbon oxidation mechanism
journal, March 2018

  • Bartlett, Marcus A.; Liang, Tao; Pu, Liang
  • The Journal of Chemical Physics, Vol. 148, Issue 9
  • DOI: 10.1063/1.5017305

An efficient linear-scaling CCSD(T) method based on local natural orbitals
journal, September 2013

  • Rolik, Zoltán; Szegedy, Lóránt; Ladjánszki, István
  • The Journal of Chemical Physics, Vol. 139, Issue 9
  • DOI: 10.1063/1.4819401

The fate of the tert-butyl radical in low-temperature autoignition reactions
journal, May 2017

  • Moore, Kevin B.; Turney, Justin M.; Schaefer, Henry F.
  • The Journal of Chemical Physics, Vol. 146, Issue 19
  • DOI: 10.1063/1.4983128

Ab initio geometry optimization for large molecules
journal, September 1997