skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Size dependence of photocatalytic hydrogen generation for CdTe quantum dots

Abstract

CdTe quantum dots (QDs) are attractive photosensitizers for photocatalytic proton reduction due to their broad absorbance profile that can extend from the ultraviolet to near-infrared regions, providing access to a larger portion of the solar spectrum than possible with analogous CdSe and CdS QD photosensitizers. Here, the photocatalytic hydrogen (H2) generation from various sizes of dihydrolipoic acid (DHLA)-capped CdTe QDs, ranging from 2.5 to 7.5 nm in diameter, and a molecular Ni-DHLA catalyst in aqueous solutions was evaluated, and an unusual size-dependent photocatalytic activity with CdTe QDs was observed. Under optimized conditions, using 3.4 nm CdTe-DHLA and a 1:20 ratio of QD/Ni-DHLA catalyst, as many as 38 000 turnover numbers (mol H2 per mol QD) were achieved. However, below this critical size, the H2 production efficiency decreased; this behavior is attributed to the rapid oxidation of the QD surface, resulting in detrimental surface trap states. These results are consistent with ultrafast transient absorption spectroscopic measurements, which suggest the presence of extremely fast charge-trapping processes in the oxidized CdTe-DHLA QDs. While fast electron transfer from CdTe-DHLA QDs is observed in the presence of the Ni-DHLA catalyst, the charge trapping processes occur on a competitive time scale, thus lowering the efficiency ofmore » the CdTe/Ni-DHLA H2 production system. Understanding rapid charge trapping in CdTe QDs may help suggest potential improvements for the overall CdTe photocatalytic system.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2]; ORCiD logo [2];  [2]; ORCiD logo [2]
  1. Chinese Academy of Sciences (CAS), Sichuan (China)
  2. Univ. of Rochester, NY (United States)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1801530
Alternate Identifier(s):
OSTI ID: 1573113
Grant/Contract Number:  
SC0002106; FG02-09ER16121; DEFG02-09ER16121
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 151; Journal Issue: 17; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; Physics

Citation Formats

Yin, Jiajia, Cogan, Nicole B., Burke, Rebeckah, Hou, Zhentao, Sowers, Kelly L., and Krauss, Todd D.. Size dependence of photocatalytic hydrogen generation for CdTe quantum dots. United States: N. p., 2019. Web. https://doi.org/10.1063/1.5125000.
Yin, Jiajia, Cogan, Nicole B., Burke, Rebeckah, Hou, Zhentao, Sowers, Kelly L., & Krauss, Todd D.. Size dependence of photocatalytic hydrogen generation for CdTe quantum dots. United States. https://doi.org/10.1063/1.5125000
Yin, Jiajia, Cogan, Nicole B., Burke, Rebeckah, Hou, Zhentao, Sowers, Kelly L., and Krauss, Todd D.. Tue . "Size dependence of photocatalytic hydrogen generation for CdTe quantum dots". United States. https://doi.org/10.1063/1.5125000. https://www.osti.gov/servlets/purl/1801530.
@article{osti_1801530,
title = {Size dependence of photocatalytic hydrogen generation for CdTe quantum dots},
author = {Yin, Jiajia and Cogan, Nicole B. and Burke, Rebeckah and Hou, Zhentao and Sowers, Kelly L. and Krauss, Todd D.},
abstractNote = {CdTe quantum dots (QDs) are attractive photosensitizers for photocatalytic proton reduction due to their broad absorbance profile that can extend from the ultraviolet to near-infrared regions, providing access to a larger portion of the solar spectrum than possible with analogous CdSe and CdS QD photosensitizers. Here, the photocatalytic hydrogen (H2) generation from various sizes of dihydrolipoic acid (DHLA)-capped CdTe QDs, ranging from 2.5 to 7.5 nm in diameter, and a molecular Ni-DHLA catalyst in aqueous solutions was evaluated, and an unusual size-dependent photocatalytic activity with CdTe QDs was observed. Under optimized conditions, using 3.4 nm CdTe-DHLA and a 1:20 ratio of QD/Ni-DHLA catalyst, as many as 38 000 turnover numbers (mol H2 per mol QD) were achieved. However, below this critical size, the H2 production efficiency decreased; this behavior is attributed to the rapid oxidation of the QD surface, resulting in detrimental surface trap states. These results are consistent with ultrafast transient absorption spectroscopic measurements, which suggest the presence of extremely fast charge-trapping processes in the oxidized CdTe-DHLA QDs. While fast electron transfer from CdTe-DHLA QDs is observed in the presence of the Ni-DHLA catalyst, the charge trapping processes occur on a competitive time scale, thus lowering the efficiency of the CdTe/Ni-DHLA H2 production system. Understanding rapid charge trapping in CdTe QDs may help suggest potential improvements for the overall CdTe photocatalytic system.},
doi = {10.1063/1.5125000},
journal = {Journal of Chemical Physics},
number = 17,
volume = 151,
place = {United States},
year = {2019},
month = {11}
}

Works referenced in this record:

Hole Transfer from Photoexcited Quantum Dots: The Relationship between Driving Force and Rate
journal, December 2015

  • Olshansky, Jacob H.; Ding, Tina X.; Lee, Youjin V.
  • Journal of the American Chemical Society, Vol. 137, Issue 49
  • DOI: 10.1021/jacs.5b10856

Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

Quantum Confinement Controls Photocatalysis: A Free Energy Analysis for Photocatalytic Proton Reduction at CdSe Nanocrystals
journal, April 2013

  • Zhao, Jing; Holmes, Michael A.; Osterloh, Frank E.
  • ACS Nano, Vol. 7, Issue 5
  • DOI: 10.1021/nn400826h

Recovery of Active and Efficient Photocatalytic H 2 Production for CdSe Quantum Dots
journal, December 2017

  • Burke, Rebeckah; Cogan, Nicole M. B.; Oi, Aidan
  • The Journal of Physical Chemistry C, Vol. 122, Issue 25
  • DOI: 10.1021/acs.jpcc.8b01237

On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I
journal, May 1956

  • Marcus, R. A.
  • The Journal of Chemical Physics, Vol. 24, Issue 5
  • DOI: 10.1063/1.1742723

Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals
journal, July 2003

  • Yu, W. William; Qu, Lianhua; Guo, Wenzhuo
  • Chemistry of Materials, Vol. 15, Issue 14, p. 2854-2860
  • DOI: 10.1021/cm034081k

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Spectroelectrochemical Signatures of Surface Trap Passivation on CdTe Nanocrystals
journal, October 2018


Charge carrier dynamics in thiol capped CdTe quantum dots
journal, January 2010

  • Kaniyankandy, Sreejith; Rawalekar, Sachin; Verma, Sandeep
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 16
  • DOI: 10.1039/b921130f

Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals
journal, July 2000

  • Klimov, Victor I.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 26
  • DOI: 10.1021/jp9944132

Thiol-Capping of CdTe Nanocrystals:  An Alternative to Organometallic Synthetic Routes
journal, July 2002

  • Gaponik, Nikolai; Talapin, Dmitri V.; Rogach, Andrey L.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 29
  • DOI: 10.1021/jp025541k

Ultrafast Transient Absorption Study of the Nature of Interaction between Oppositely Charged Photoexcited CdTe Quantum Dots and Cresyl Violet
journal, June 2015

  • Sekhar, M. Chandra; Samanta, Anunay
  • The Journal of Physical Chemistry C, Vol. 119, Issue 27
  • DOI: 10.1021/acs.jpcc.5b02203

Ultrafast Exciton Dynamics in CdTe Nanocrystals and Core/Shell CdTe/CdS Nanocrystals
journal, October 2011

  • Yan, Yueran; Chen, Gang; Van Patten, P. Gregory
  • The Journal of Physical Chemistry C, Vol. 115, Issue 46
  • DOI: 10.1021/jp204420q

Enhancing the Rate of Quantum-Dot-Photocatalyzed Carbon–Carbon Coupling by Tuning the Composition of the Dot’s Ligand Shell
journal, March 2017

  • Zhang, Zhengyi; Edme, Kedy; Lian, Shichen
  • Journal of the American Chemical Society, Vol. 139, Issue 12
  • DOI: 10.1021/jacs.6b13220

Uncovering Hot Hole Dynamics in CdSe Nanocrystals
journal, August 2014

  • Liu, Cunming; Peterson, Jeffrey J.; Krauss, Todd D.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 17
  • DOI: 10.1021/jz5015554

Charge transfer dynamics between MPA capped CdTe quantum dots and methyl viologen
journal, September 2017

  • Iagatti, Alessandro; Tarpani, Luigi; Fiacchi, Eleonora
  • Journal of Photochemistry and Photobiology A: Chemistry, Vol. 346
  • DOI: 10.1016/j.jphotochem.2017.06.022

Ultrafast Charge Dynamics in Trap-Free and Surface-Trapping Colloidal Quantum Dots
journal, June 2015

  • Smith, Charles T.; Leontiadou, Marina A.; Page, Robert
  • Advanced Science, Vol. 2, Issue 10
  • DOI: 10.1002/advs.201500088

Review of solutions to global warming, air pollution, and energy security
journal, January 2009


Size-Dependent Valence and Conduction Band-Edge Energies of Semiconductor Nanocrystals
journal, June 2011

  • Jasieniak, Jacek; Califano, Marco; Watkins, Scott E.
  • ACS Nano, Vol. 5, Issue 7
  • DOI: 10.1021/nn201681s

Effect of Surface States on Charge-Transfer Dynamics in Type II CdTe/ZnTe Core–Shell Quantum Dots: A Femtosecond Transient Absorption Study
journal, June 2011

  • Rawalekar, Sachin; Kaniyankandy, Sreejith; Verma, Sandeep
  • The Journal of Physical Chemistry C, Vol. 115, Issue 25
  • DOI: 10.1021/jp202916v

Simultaneous Determination of the Adsorption Constant and the Photoinduced Electron Transfer Rate for a Cds Quantum Dot–Viologen Complex
journal, July 2011

  • Morris-Cohen, Adam J.; Frederick, Matthew T.; Cass, Laura C.
  • Journal of the American Chemical Society, Vol. 133, Issue 26
  • DOI: 10.1021/ja2010237

Efficient and Limiting Reactions in Aqueous Light-Induced Hydrogen Evolution Systems using Molecular Catalysts and Quantum Dots
journal, May 2014

  • Gimbert-Suriñach, Carolina; Albero, Josep; Stoll, Thibaut
  • Journal of the American Chemical Society, Vol. 136, Issue 21
  • DOI: 10.1021/ja501489h

Ultrafast dynamics of inter- and intraband transitions in semiconductor nanocrystals: Implications for quantum-dot lasers
journal, July 1999


The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment
journal, August 2002


Photodriven Charge Separation Dynamics in CdSe/ZnS Core/Shell Quantum Dot/Cobaloxime Hybrid for Efficient Hydrogen Production
journal, September 2012

  • Huang, Jier; Mulfort, Karen L.; Du, Pingwu
  • Journal of the American Chemical Society, Vol. 134, Issue 40
  • DOI: 10.1021/ja3062584

Hydrogen Production by Molecular Photocatalysis
journal, October 2007

  • Esswein, Arthur J.; Nocera, Daniel G.
  • Chemical Reviews, Vol. 107, Issue 10
  • DOI: 10.1021/cr050193e

Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands
journal, August 2005

  • Guyot-Sionnest, Philippe; Wehrenberg, Brian; Yu, Dong
  • The Journal of Chemical Physics, Vol. 123, Issue 7
  • DOI: 10.1063/1.2004818

Unraveling the Structure and Dynamics of Excitons in Semiconductor Quantum Dots
journal, January 2011

  • Kambhampati, Patanjali
  • Accounts of Chemical Research, Vol. 44, Issue 1
  • DOI: 10.1021/ar1000428

A robust “artificial catalyst” in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution
journal, January 2013

  • Li, Zhi-Jun; Li, Xu-Bing; Wang, Jiu-Ju
  • Energy Environ. Sci., Vol. 6, Issue 2
  • DOI: 10.1039/c2ee23898e

Charge Separation and Recombination in CdTe/CdSe Core/Shell Nanocrystals as a Function of Shell Coverage: Probing the Onset of the Quasi Type-II Regime
journal, August 2010

  • Chuang, Chi-Hung; Lo, Shun S.; Scholes, Gregory D.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 17
  • DOI: 10.1021/jz1008399

Powering the planet with solar fuel
journal, April 2009


Universal Trapping Mechanism in Semiconductor Nanocrystals
journal, April 2013

  • Califano, Marco; Gómez-Campos, Francisco M.
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl4003014

Quantum dot bioconjugates for imaging, labelling and sensing
journal, June 2005

  • Medintz, Igor L.; Uyeda, H. Tetsuo; Goldman, Ellen R.
  • Nature Materials, Vol. 4, Issue 6, p. 435-446
  • DOI: 10.1038/nmat1390

Kinetics of quenching of luminescent probes in micellar systems. II
journal, January 1982

  • Tachiya, M.
  • The Journal of Chemical Physics, Vol. 76, Issue 1
  • DOI: 10.1063/1.442728

Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding
journal, November 2013

  • Anderson, Nicholas C.; Hendricks, Mark P.; Choi, Joshua J.
  • Journal of the American Chemical Society, Vol. 135, Issue 49, p. 18536-18548
  • DOI: 10.1021/ja4086758

Competition between Energy and Electron Transfer from CdSe QDs to Adsorbed Rhodamine B
journal, December 2009

  • Boulesbaa, Abdelaziz; Huang, Zhuangqun; Wu, David
  • The Journal of Physical Chemistry C, Vol. 114, Issue 2
  • DOI: 10.1021/jp909972b

Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion
journal, January 2012

  • Zhu, Haiming; Lian, Tianquan
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee22679k

Photochemical hydrogen production from water catalyzed by CdTe quantum dots/molecular cobalt catalyst hybrid systems
journal, January 2015

  • Han, Kai; Wang, Mei; Zhang, Shuai
  • Chemical Communications, Vol. 51, Issue 32
  • DOI: 10.1039/c5cc00536a

Colloidal-quantum-dot photovoltaics using atomic-ligand passivation
journal, September 2011

  • Tang, Jiang; Kemp, Kyle W.; Hoogland, Sjoerd
  • Nature Materials, Vol. 10, Issue 10
  • DOI: 10.1038/nmat3118

Ligand removal from CdS quantum dots for enhanced photocatalytic H 2 generation in pH neutral water
journal, January 2016

  • Chang, Christina M.; Orchard, Katherine L.; Martindale, Benjamin C. M.
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/c5ta04136h

Auger-Assisted Electron Transfer from Photoexcited Semiconductor Quantum Dots
journal, February 2014

  • Zhu, Haiming; Yang, Ye; Hyeon-Deuk, Kim
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl4041687

Optically detected magnetic resonance of thiol-capped CdTe nanocrystals
journal, November 2001


Molecular systems for light driven hydrogen production
journal, January 2012

  • Eckenhoff, William T.; Eisenberg, Richard
  • Dalton Transactions, Vol. 41, Issue 42
  • DOI: 10.1039/c2dt30823a

Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe
journal, May 2009


Charge Transfer Dynamics and Auger Recombination of CdTe/CdS Core/Shell Quantum Dots
journal, July 2015

  • Wang, Li; Tian, Yumei; Okuhata, Tomoki
  • The Journal of Physical Chemistry C, Vol. 119, Issue 31
  • DOI: 10.1021/acs.jpcc.5b05254

Exceptional Catalytic Nature of Quantum Dots for Photocatalytic Hydrogen Evolution without External Cocatalysts
journal, June 2018

  • Gao, Yu-Ji; Li, Xu-Bing; Wu, Hao-Lin
  • Advanced Functional Materials, Vol. 28, Issue 33
  • DOI: 10.1002/adfm.201801769

Photocatalytic Hydrogen Generation by CdSe/CdS Nanoparticles
journal, August 2016


Robust Photogeneration of H2 in Water Using Semiconductor Nanocrystals and a Nickel Catalyst
journal, November 2012


Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase
journal, October 2013

  • Jian, Jing-Xin; Liu, Qiang; Li, Zhi-Jun
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3695

Aqueous Photogeneration of H 2 with CdSe Nanocrystals and Nickel Catalysts: Electron Transfer Dynamics
journal, December 2014

  • Liu, Cunming; Qiu, Fen; Peterson, Jeffrey J.
  • The Journal of Physical Chemistry B, Vol. 119, Issue 24
  • DOI: 10.1021/jp510935w

Controlled Assembly of Hydrogenase-CdTe Nanocrystal Hybrids for Solar Hydrogen Production
journal, July 2010

  • Brown, Katherine A.; Dayal, Smita; Ai, Xin
  • Journal of the American Chemical Society, Vol. 132, Issue 28
  • DOI: 10.1021/ja101031r

Semiconductor Nanocrystals as Fluorescent Biological Labels
patent, September 1998


Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals
journal, January 2012

  • Holmes, Michael A.; Townsend, Troy K.; Osterloh, Frank E.
  • Chem. Commun., Vol. 48, Issue 3
  • DOI: 10.1039/c1cc16082f

Visible Light Catalysis-Assisted Assembly of Ni h -QD Hollow Nanospheres in Situ via Hydrogen Bubbles
journal, May 2014

  • Li, Zhi-Jun; Fan, Xiang-Bing; Li, Xu-Bing
  • Journal of the American Chemical Society, Vol. 136, Issue 23
  • DOI: 10.1021/ja5047236

Synthesis and characterization of thiol-stabilized CdTe nanocrystals
journal, November 1996

  • Rogach, A. L.; Katsikas, L.; Kornowski, A.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 100, Issue 11
  • DOI: 10.1002/bbpc.19961001104

The Role of Hole Localization in Sacrificial Hydrogen Production by Semiconductor–Metal Heterostructured Nanocrystals
journal, July 2011

  • Acharya, Krishna P.; Khnayzer, Rony S.; O’Connor, Timothy
  • Nano Letters, Vol. 11, Issue 7
  • DOI: 10.1021/nl201388c

A Highly Efficient Photocatalytic System for Hydrogen Production by a Robust Hydrogenase Mimic in an Aqueous Solution
journal, March 2011

  • Wang, Feng; Wang, Wen-Guang; Wang, Xiao-Jun
  • Angewandte Chemie International Edition, Vol. 50, Issue 14
  • DOI: 10.1002/anie.201006352

Role of Ligand Exchange at CdSe Quantum Dot Layers for Charge Separation
journal, July 2012

  • Zillner, Elisabeth; Fengler, Steffen; Niyamakom, Phenwisa
  • The Journal of Physical Chemistry C, Vol. 116, Issue 31
  • DOI: 10.1021/jp303766d

Electron transfers in chemistry and biology
journal, August 1985

  • Marcus, R. A.; Sutin, Norman
  • Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, Vol. 811, Issue 3
  • DOI: 10.1016/0304-4173(85)90014-x

Effect of Chloride Passivation on Recombination Dynamics in CdTe Colloidal Quantum Dots
journal, January 2015

  • Espinobarro-Velazquez, Daniel; Leontiadou, Marina A.; Page, Robert C.
  • ChemPhysChem, Vol. 16, Issue 6
  • DOI: 10.1002/cphc.201402753

Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots
journal, October 2002

  • Wehrenberg, Brian L.; Wang, Congjun; Guyot-Sionnest, Philippe
  • The Journal of Physical Chemistry B, Vol. 106, Issue 41
  • DOI: 10.1021/jp021187e

A thin CdSe shell boosts the electron transfer from CdTe quantum dots to methylene blue
journal, January 2018

  • Dworak, L.; Roth, S.; Scheffer, M. P.
  • Nanoscale, Vol. 10, Issue 4
  • DOI: 10.1039/c7nr08287h

Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability
journal, July 2003

  • Zhong, Xinhua; Han, Mingyong; Dong, Zhili
  • Journal of the American Chemical Society, Vol. 125, Issue 28, p. 8589-8594
  • DOI: 10.1021/ja035096m

Electron and hole relaxation pathways in semiconductor quantum dots
journal, November 1999


Boosting photocatalytic hydrogen generation of cadmium telluride colloidal quantum dots by nickel ion doping
journal, August 2019


Semiconductor Clusters, Nanocrystals, and Quantum Dots
journal, February 1996


Size-Dependent Electrochemical Behavior of Thiol-Capped CdTe Nanocrystals in Aqueous Solution
journal, January 2005

  • Poznyak, Sergey K.; Osipovich, Nikolai P.; Shavel, Alexey
  • The Journal of Physical Chemistry B, Vol. 109, Issue 3
  • DOI: 10.1021/jp0460801

Ultrafast Charge Carrier Relaxation and Charge Transfer Dynamics of CdTe/CdS Core−Shell Quantum Dots as Studied by Femtosecond Transient Absorption Spectroscopy
journal, December 2009

  • Rawalekar, Sachin; Kaniyankandy, Sreejith; Verma, Sandeep
  • The Journal of Physical Chemistry C, Vol. 114, Issue 3
  • DOI: 10.1021/jp909118c

Synthesis, Stabilization, and Electronic Structure of Quantum Semiconductor Nanoclusters
journal, August 1989


Ultrafast Trap State-Mediated Electron Transfer for Quantum Dot Redox Sensing
journal, April 2018

  • Harvie, Andrew J.; Smith, Charles T.; Ahumada-Lazo, Ruben
  • The Journal of Physical Chemistry C, Vol. 122, Issue 18
  • DOI: 10.1021/acs.jpcc.8b02551