DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Silico Discovery of Covalent Organic Frameworks for Carbon Capture

Abstract

We screen a database of more than 69 000 hypothetical covalent organic frameworks (COFs) for carbon capture using parasitic energy as a metric. To compute CO2–framework interactions in molecular simulations, we develop a genetic algorithm to tune the charge equilibration method and derive accurate framework partial charges. Nearly 400 COFs are identified with parasitic energy lower than that of an amine scrubbing process using monoethanolamine; more than 70 are better performers than the best experimental COFs and several perform similarly to Mg-MOF-74. We analyze the effect of pore topology on carbon capture performance to guide the development of improved carbon capture materials.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [5]; ORCiD logo [1]
  1. Univ. of California, Berkeley, CA (United States); Ecole Polytechnique Federale Lausanne (Switzerland)
  2. Ecole Polytechnique Federale Lausanne (Switzerland); Instituto de Física, Universidade Federal de Uberlândia (Brasil)
  3. Ecole Polytechnique Federale Lausanne (Switzerland)
  4. Univ. of California, Berkeley, CA (United States); Univ. of Cambridge (United Kingdom)
  5. Ecole Polytechnique Federale Lausanne (Switzerland); Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1801402
Grant/Contract Number:  
SC0001015
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 12; Journal Issue: 19; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; covalent organic frameworks; carbon capture and storage; adsorption; biological databases; energy; aterials science; carbon capture; parasitic energy; gas separation; molecular simulation; charge equilibration method; genetic algorithm

Citation Formats

Deeg, Kathryn S., Damasceno Borges, Daiane, Ongari, Daniele, Rampal, Nakul, Talirz, Leopold, Yakutovich, Aliaksandr V., Huck, Johanna M., and Smit, Berend. In Silico Discovery of Covalent Organic Frameworks for Carbon Capture. United States: N. p., 2020. Web. doi:10.1021/acsami.0c01659.
Deeg, Kathryn S., Damasceno Borges, Daiane, Ongari, Daniele, Rampal, Nakul, Talirz, Leopold, Yakutovich, Aliaksandr V., Huck, Johanna M., & Smit, Berend. In Silico Discovery of Covalent Organic Frameworks for Carbon Capture. United States. https://doi.org/10.1021/acsami.0c01659
Deeg, Kathryn S., Damasceno Borges, Daiane, Ongari, Daniele, Rampal, Nakul, Talirz, Leopold, Yakutovich, Aliaksandr V., Huck, Johanna M., and Smit, Berend. Thu . "In Silico Discovery of Covalent Organic Frameworks for Carbon Capture". United States. https://doi.org/10.1021/acsami.0c01659. https://www.osti.gov/servlets/purl/1801402.
@article{osti_1801402,
title = {In Silico Discovery of Covalent Organic Frameworks for Carbon Capture},
author = {Deeg, Kathryn S. and Damasceno Borges, Daiane and Ongari, Daniele and Rampal, Nakul and Talirz, Leopold and Yakutovich, Aliaksandr V. and Huck, Johanna M. and Smit, Berend},
abstractNote = {We screen a database of more than 69 000 hypothetical covalent organic frameworks (COFs) for carbon capture using parasitic energy as a metric. To compute CO2–framework interactions in molecular simulations, we develop a genetic algorithm to tune the charge equilibration method and derive accurate framework partial charges. Nearly 400 COFs are identified with parasitic energy lower than that of an amine scrubbing process using monoethanolamine; more than 70 are better performers than the best experimental COFs and several perform similarly to Mg-MOF-74. We analyze the effect of pore topology on carbon capture performance to guide the development of improved carbon capture materials.},
doi = {10.1021/acsami.0c01659},
journal = {ACS Applied Materials and Interfaces},
number = 19,
volume = 12,
place = {United States},
year = {Thu Mar 26 00:00:00 EDT 2020},
month = {Thu Mar 26 00:00:00 EDT 2020}
}

Works referenced in this record:

In silico screening of carbon-capture materials
journal, May 2012

  • Lin, Li-Chiang; Berger, Adam H.; Martin, Richard L.
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3336

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Water Effects on Postcombustion CO 2 Capture in Mg-MOF-74
journal, February 2013

  • Yu, Jiamei; Balbuena, Perla B.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 7
  • DOI: 10.1021/jp311118x

RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials
journal, February 2015


Quantum Mechanical Basis for Kinetic Diameters of Small Gaseous Molecules
journal, January 2014

  • Mehio, Nada; Dai, Sheng; Jiang, De-en
  • The Journal of Physical Chemistry A, Vol. 118, Issue 6
  • DOI: 10.1021/jp412588f

Thermodynamics of mixed-gas adsorption
journal, January 1965


Evaluating Charge Equilibration Methods To Generate Electrostatic Fields in Nanoporous Materials
journal, November 2018

  • Ongari, Daniele; Boyd, Peter G.; Kadioglu, Ozge
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 1
  • DOI: 10.1021/acs.jctc.8b00669

Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology
journal, January 2016

  • Manz, Thomas A.; Limas, Nidia Gabaldon
  • RSC Advances, Vol. 6, Issue 53
  • DOI: 10.1039/C6RA04656H

Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials
journal, December 2011

  • Martin, Richard Luis; Smit, Berend; Haranczyk, Maciej
  • Journal of Chemical Information and Modeling, Vol. 52, Issue 2
  • DOI: 10.1021/ci200386x

Charge equilibration for molecular dynamics simulations
journal, April 1991

  • Rappe, Anthony K.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 95, Issue 8
  • DOI: 10.1021/j100161a070

Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources
journal, September 2009

  • Choi, Sunho; Drese, Jeffrey H.; Jones, Christopher W.
  • ChemSusChem, Vol. 2, Issue 9, p. 796-854
  • DOI: 10.1002/cssc.200900036

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

DREIDING: a generic force field for molecular simulations
journal, December 1990

  • Mayo, Stephen L.; Olafson, Barry D.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 94, Issue 26, p. 8897-8909
  • DOI: 10.1021/j100389a010

Building a Consistent and Reproducible Database for Adsorption Evaluation in Covalent–Organic Frameworks
journal, September 2019

  • Ongari, Daniele; Yakutovich, Aliaksandr V.; Talirz, Leopold
  • ACS Central Science, Vol. 5, Issue 10
  • DOI: 10.1021/acscentsci.9b00619

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications
journal, July 2009

  • Furukawa, Hiroyasu; Yaghi, Omar M.
  • Journal of the American Chemical Society, Vol. 131, Issue 25, p. 8875-8883
  • DOI: 10.1021/ja9015765

pyIAST: Ideal adsorbed solution theory (IAST) Python package
journal, March 2016


In silico discovery of covalent organic frameworks for carbon capture
dataset, January 2020


Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional
journal, August 2009

  • Campañá, Carlos; Mussard, Bastien; Woo, Tom K.
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 10
  • DOI: 10.1021/ct9003405

Carbon Dioxide Capture: Prospects for New Materials
journal, July 2010

  • D'Alessandro, Deanna M.; Smit, Berend; Long, Jeffrey R.
  • Angewandte Chemie International Edition, Vol. 49, Issue 35, p. 6058-6082
  • DOI: 10.1002/anie.201000431

Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design
journal, January 2015

  • Lee, Kyuho; Howe, Joshua D.; Lin, Li-Chiang
  • Chemistry of Materials, Vol. 27, Issue 3, p. 668-678
  • DOI: 10.1021/cm502760q

Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption
journal, January 2011

  • Mason, Jarad A.; Sumida, Kenji; Herm, Zoey R.
  • Energy & Environmental Science, Vol. 4, Issue 8, p. 3030-3040
  • DOI: 10.1039/c1ee01720a

Transport of Gases and Vapors in Glassy and Rubbery Polymers
book, June 2006

  • Matteucci, Scott; Yampolskii, Yuri; Freeman, Benny D.
  • Materials Science of Membranes for Gas and Vapor Separation
  • DOI: 10.1002/047002903X.ch1

Chemically Meaningful Atomic Charges That Reproduce the Electrostatic Potential in Periodic and Nonperiodic Materials
journal, July 2010

  • Manz, Thomas A.; Sholl, David S.
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 8
  • DOI: 10.1021/ct100125x

AiiDA: automated interactive infrastructure and database for computational science
journal, January 2016


Exceptionally high CO2 storage in covalent-organic frameworks: Atomistic simulation study
journal, January 2008

  • Babarao, Ravichandar; Jiang, Jianwen
  • Energy & Environmental Science, Vol. 1, Issue 1
  • DOI: 10.1039/b805473h

Molecular Screening of Metal−Organic Frameworks for CO 2 Storage
journal, June 2008

  • Babarao, Ravichandar; Jiang, Jianwen
  • Langmuir, Vol. 24, Issue 12
  • DOI: 10.1021/la800369s

Accurate Characterization of the Pore Volume in Microporous Crystalline Materials
journal, July 2017


An Extended Charge Equilibration Method
journal, August 2012

  • Wilmer, Christopher E.; Kim, Ki Chul; Snurr, Randall Q.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 17
  • DOI: 10.1021/jz3008485

Metal-Organic Frameworks for Carbon Dioxide Capture and Methane Storage
journal, December 2016

  • Lin, Yichao; Kong, Chunglong; Zhang, Qiuju
  • Advanced Energy Materials, Vol. 7, Issue 4
  • DOI: 10.1002/aenm.201601296

Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
journal, April 2005

  • VandeVondele, Joost; Krack, Matthias; Mohamed, Fawzi
  • Computer Physics Communications, Vol. 167, Issue 2
  • DOI: 10.1016/j.cpc.2004.12.014

Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
journal, July 2001

  • Potoff, Jeffrey J.; Siepmann, J. Ilja
  • AIChE Journal, Vol. 47, Issue 7, p. 1676-1682
  • DOI: 10.1002/aic.690470719

Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions
journal, June 2008

  • Vlugt, T. J. H.; García-Pérez, E.; Dubbeldam, D.
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 7
  • DOI: 10.1021/ct700342k

Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?
journal, August 2012

  • Farha, Omar K.; Eryazici, Ibrahim; Jeong, Nak Cheon
  • Journal of the American Chemical Society, Vol. 134, Issue 36, p. 15016-15021
  • DOI: 10.1021/ja3055639

Covalent organic frameworks for extremely high reversible CO 2 uptake capacity: a theoretical approach
journal, January 2011

  • Choi, Yoon Jeong; Choi, Jung Hoon; Choi, Kyung Min
  • J. Mater. Chem., Vol. 21, Issue 4
  • DOI: 10.1039/C0JM02891F

Revealing the structure–property relationship of covalent organic frameworks for CO 2 capture from postcombustion gas: a multi-scale computational study
journal, January 2014

  • Tong, Minman; Yang, Qingyuan; Xiao, Yuanlong
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 29
  • DOI: 10.1039/C4CP02047B

Covalent Organic Frameworks for CO 2 Capture
journal, February 2016


In Silico Design of 2D and 3D Covalent Organic Frameworks for Methane Storage Applications
journal, June 2018


Carbon capture and storage (CCS): the way forward
journal, January 2018

  • Bui, Mai; Adjiman, Claire S.; Bardow, André
  • Energy & Environmental Science, Vol. 11, Issue 5
  • DOI: 10.1039/C7EE02342A

Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
journal, February 2012


Fast and Accurate Electrostatics in Metal Organic Frameworks with a Robust Charge Equilibration Parameterization for High-Throughput Virtual Screening of Gas Adsorption
journal, August 2013

  • Kadantsev, Eugene S.; Boyd, Peter G.; Daff, Thomas D.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 18
  • DOI: 10.1021/jz401479k

A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture
journal, January 2013

  • Zhao, Yunfeng; Yao, Ke Xin; Teng, Baiyang
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee42548g

Can Metal-Organic Framework Materials Play a Useful Role in Large-Scale Carbon Dioxide Separations?
journal, August 2010

  • Keskin, Seda; van Heest, Timothy M.; Sholl, David S.
  • ChemSusChem, Vol. 3, Issue 8
  • DOI: 10.1002/cssc.201000114

The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion
journal, July 2017

  • Trickett, Christopher A.; Helal, Aasif; Al-Maythalony, Bassem A.
  • Nature Reviews Materials, Vol. 2, Issue 8
  • DOI: 10.1038/natrevmats.2017.45

Evaluating different classes of porous materials for carbon capture
journal, January 2014

  • Huck, Johanna M.; Lin, Li-Chiang; Berger, Adam H.
  • Energy Environ. Sci., Vol. 7, Issue 12
  • DOI: 10.1039/C4EE02636E

Introduction to Carbon Capture and Sequestration
book, June 2013

  • Smit, Berend; Reimer, Jeffrey A.; Oldenburg, Curtis M.
  • The Berkeley Lectures on Energy
  • DOI: 10.1142/p911