Convex Relaxations of the Network Flow Problem Under Cycle Constraints
- Univ. of Illinois at Urbana-Champaign, IL (United States)
In this paper, we consider the problem of optimizing the flows in a lossless flow network with additional nonconvex cycle constraints on nodal variables; such constraints appear in several applications, including electric power, water distribution, and natural gas networks. This problem is a nonconvex version of the minimum-cost network flow problem (NFP), and to solve it, we propose three different approaches. One approach is based on solving a convex approximation of the problem, obtained by augmenting the cost function with an entropy-like term to relax the nonconvex constraints. We show that the approximation error, for which we give an upper bound, can be made small enough for practical use. An alternative approach is to solve the classical NFP, that is, without the cycle constraints, and solve a separate optimization problem afterwards in order to recover the actual flows satisfying the cycle constraints; the solution of this separate problem maximizes the individual entropies of the cycles. The third approach is based on replacing the nonconvex constraint set with a convex inner approximation, which yields a suboptimal solution for the cyclic networks with each edge belonging to at most two cycles. We validate the practical usefulness of the theoretical results through numerical examples, in which we study the standard test systems for water and electric power distribution networks.
- Research Organization:
- Univ. of California, San Diego, CA (United States)
- Sponsoring Organization:
- USDOE Advanced Research Projects Agency - Energy (ARPA-E)
- Grant/Contract Number:
- AR0000695
- OSTI ID:
- 1799058
- Journal Information:
- IEEE Transactions on Control of Network Systems, Vol. 7, Issue 1; ISSN 2325-5870
- Publisher:
- IEEECopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Entropy based primal-dual algorithm for convex and linear cost transportation problems with serial and parallel implementations
Extended convex hull-based distributed optimal energy flow of integrated electricity-gas systems