DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Highly Concentrated Electrolytes: Electrochemical and Physicochemical Characteristics of LiPF 6 in Propylene Carbonate Solutions

Abstract

Highly concentrated electrolytes (HCEs) based on LiPF 6 in propylene carbonate (PC) have been examined as lithium-ion battery electrolytes. These HCEs have lower ionic conductivities and higher viscosities than ethylene carbonate (EC) electrolytes with 1.2 M LiPF 6 , but they have higher Li + ion transference numbers. Electrochemical cycling behaviour of LiNi 0.8 Co 0.015 Al 0.05 O 2 //graphite cells with 3.2 M LiPF 6 in PC resembles that of cells with EC-based electrolytes; the HCE cells have higher impedance, which can be lowered by increasing test temperature. By employing Raman and infrared spectroscopy, combined with density functional theory and ab initio molecular dynamics simulations, we reveal that the Li + solvation structure and speciation are key factors that determine cell performance. Two distinct regimes are observed as a function of salt concentration—in the conventional regime, the solvation number (SN) is mostly constant, while in the HCE regime it decreases linearly. Graphite exfoliation is suppressed only at very high salt concentrations ( > 2.4 M), where [ PC ] free /[Li + ] < 1 and P F 6 f r e e > P C f r e e . Results from the Advanced Electrolyte Model indicate that Li + desolvation improves at higher LiPF 6 concentrations, thereby mitigating PC co-intercalation into the graphite. However, Li + ion transport is hindered in the HCEs, which increases impedance at both the oxide-positive and graphite-negative electrodes.

Authors:
ORCiD logo; ; ; ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office
OSTI Identifier:
1835347
Alternate Identifier(s):
OSTI ID: 1798189
Grant/Contract Number:  
AC02-06CH11357; AC07-05ID14517
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 168 Journal Issue: 5; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Advanced electrolyte model; graphite anode; ion solvation; ion transport; lithium-ion battery; vibrational spectroscopy

Citation Formats

Åvall, Gustav, Wallenstein, Joachim, Cheng, Gang, Gering, Kevin L., Johansson, Patrik, and Abraham, Daniel P. Highly Concentrated Electrolytes: Electrochemical and Physicochemical Characteristics of LiPF 6 in Propylene Carbonate Solutions. United States: N. p., 2021. Web. doi:10.1149/1945-7111/abfdc3.
Åvall, Gustav, Wallenstein, Joachim, Cheng, Gang, Gering, Kevin L., Johansson, Patrik, & Abraham, Daniel P. Highly Concentrated Electrolytes: Electrochemical and Physicochemical Characteristics of LiPF 6 in Propylene Carbonate Solutions. United States. https://doi.org/10.1149/1945-7111/abfdc3
Åvall, Gustav, Wallenstein, Joachim, Cheng, Gang, Gering, Kevin L., Johansson, Patrik, and Abraham, Daniel P. Thu . "Highly Concentrated Electrolytes: Electrochemical and Physicochemical Characteristics of LiPF 6 in Propylene Carbonate Solutions". United States. https://doi.org/10.1149/1945-7111/abfdc3.
@article{osti_1835347,
title = {Highly Concentrated Electrolytes: Electrochemical and Physicochemical Characteristics of LiPF 6 in Propylene Carbonate Solutions},
author = {Åvall, Gustav and Wallenstein, Joachim and Cheng, Gang and Gering, Kevin L. and Johansson, Patrik and Abraham, Daniel P.},
abstractNote = {Highly concentrated electrolytes (HCEs) based on LiPF 6 in propylene carbonate (PC) have been examined as lithium-ion battery electrolytes. These HCEs have lower ionic conductivities and higher viscosities than ethylene carbonate (EC) electrolytes with 1.2 M LiPF 6 , but they have higher Li + ion transference numbers. Electrochemical cycling behaviour of LiNi 0.8 Co 0.015 Al 0.05 O 2 //graphite cells with 3.2 M LiPF 6 in PC resembles that of cells with EC-based electrolytes; the HCE cells have higher impedance, which can be lowered by increasing test temperature. By employing Raman and infrared spectroscopy, combined with density functional theory and ab initio molecular dynamics simulations, we reveal that the Li + solvation structure and speciation are key factors that determine cell performance. Two distinct regimes are observed as a function of salt concentration—in the conventional regime, the solvation number (SN) is mostly constant, while in the HCE regime it decreases linearly. Graphite exfoliation is suppressed only at very high salt concentrations ( > 2.4 M), where [ PC ] free /[Li + ] < 1 and P F 6 − f r e e > P C f r e e . Results from the Advanced Electrolyte Model indicate that Li + desolvation improves at higher LiPF 6 concentrations, thereby mitigating PC co-intercalation into the graphite. However, Li + ion transport is hindered in the HCEs, which increases impedance at both the oxide-positive and graphite-negative electrodes.},
doi = {10.1149/1945-7111/abfdc3},
journal = {Journal of the Electrochemical Society},
number = 5,
volume = 168,
place = {United States},
year = {Thu May 13 00:00:00 EDT 2021},
month = {Thu May 13 00:00:00 EDT 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1149/1945-7111/abfdc3

Save / Share:

Works referenced in this record:

Infrared (attenuated total reflection) study of propylene carbonate solutions containing lithium and sodium perchlorate
journal, May 2006

  • Brooksby, Paula A.; Fawcett, W. Ronald
  • Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 64, Issue 2
  • DOI: 10.1016/j.saa.2005.07.033

Solvation equilibria in very concentrated electrolyte solutions
journal, January 1973

  • Stokes, R. H.; Robinson, R. A.
  • Journal of Solution Chemistry, Vol. 2, Issue 2-3
  • DOI: 10.1007/BF00651972

Advances and issues in developing salt-concentrated battery electrolytes
journal, March 2019


Review—Superconcentrated Electrolytes for Lithium Batteries
journal, January 2015

  • Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0041514jes

Performance of high-power lithium-ion cells under pulse discharge and charge conditions
journal, December 2009

  • Abraham, D. P.; Dees, D. W.; Christophersen, J.
  • International Journal of Energy Research, Vol. 34, Issue 2
  • DOI: 10.1002/er.1665

Solvation Structure and Dynamics of the Lithium Ion in Organic Carbonate-Based Electrolytes: A Time-Dependent Infrared Spectroscopy Study
journal, October 2016

  • Fulfer, Kristen D.; Kuroda, Daniel G.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 42
  • DOI: 10.1021/acs.jpcc.6b08607

Role of Mixed Solvation and Ion Pairing in the Solution Structure of Lithium Ion Battery Electrolytes
journal, June 2015

  • Seo, Daniel M.; Reininger, Stefanie; Kutcher, Mary
  • The Journal of Physical Chemistry C, Vol. 119, Issue 25
  • DOI: 10.1021/acs.jpcc.5b03694

A study of the Li/Li+ couple in DMC and PC solvents
journal, March 1999


The Electrochemistry of Black Carbons
journal, December 1983

  • Besenhard, J�rgen O.; Fritz, Heinz P.
  • Angewandte Chemie International Edition in English, Vol. 22, Issue 12
  • DOI: 10.1002/anie.198309501

Studies on Solvation of Lithium Ions in Organic Electrolyte Solutions by Electrospray Ionization-Mass Spectroscopy
journal, January 2001

  • Fukushima, Tsuyoshi; Matsuda, Yoshiharu; Hashimoto, Hiroyuki
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 8
  • DOI: 10.1149/1.1383428

Conductivity and Solvation of Li + Ions of LiPF 6 in Propylene Carbonate Solutions
journal, May 2000

  • Kondo, Kazutaka; Sano, Mitsuru; Hiwara, Akio
  • The Journal of Physical Chemistry B, Vol. 104, Issue 20
  • DOI: 10.1021/jp000142f

In situ FTIR spectra at the Cu electrode/propylene carbonate solution interface
journal, February 2007


Whether EC and PC Differ in Interphasial Chemistry on Graphitic Anode and How
journal, January 2009

  • Xu, Kang
  • Journal of The Electrochemical Society, Vol. 156, Issue 9
  • DOI: 10.1149/1.3166182

A novel approach to ligand-exchange rates applied to lithium-ion battery and sodium-ion battery electrolytes
journal, June 2020

  • Åvall, Gustav; Johansson, Patrik
  • The Journal of Chemical Physics, Vol. 152, Issue 23
  • DOI: 10.1063/5.0005397

Spectroscopic and Density Functional Theory Characterization of Common Lithium Salt Solvates in Carbonate Electrolytes for Lithium Batteries
journal, January 2017

  • Chapman, Navid; Borodin, Oleg; Yoon, Taeho
  • The Journal of Physical Chemistry C, Vol. 121, Issue 4
  • DOI: 10.1021/acs.jpcc.6b12234

Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries
journal, March 2014

  • Yamada, Yuki; Furukawa, Keizo; Sodeyama, Keitaro
  • Journal of the American Chemical Society, Vol. 136, Issue 13, p. 5039-5046
  • DOI: 10.1021/ja412807w

The cathodic decomposition of propylene carbonate in lithium batteries
journal, March 1987

  • Arakawa, Masayasu; Yamaki, Jun-Ichi
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 219, Issue 1-2
  • DOI: 10.1016/0022-0728(87)85045-3

Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal–organic ionic molten salts
journal, January 2016

  • Chen, Fangfang; Forsyth, Maria
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 28
  • DOI: 10.1039/C6CP01411A

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Raman spectrum of propylene carbonate
journal, January 1979

  • Janz, G. J.; Ambrose, J.; Coutts, J. W.
  • Spectrochimica Acta Part A: Molecular Spectroscopy, Vol. 35, Issue 2
  • DOI: 10.1016/0584-8539(79)80181-6

A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics
journal, August 1997

  • Cancès, E.; Mennucci, B.; Tomasi, J.
  • The Journal of Chemical Physics, Vol. 107, Issue 8
  • DOI: 10.1063/1.474659

Unified Approach for Molecular Dynamics and Density-Functional Theory
journal, November 1985


Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts
journal, June 1974

  • Besenhard, J. O.; Fritz, H. P.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 53, Issue 2
  • DOI: 10.1016/S0022-0728(74)80146-4

Quantum Mechanical Continuum Solvation Models
journal, August 2005

  • Tomasi, Jacopo; Mennucci, Benedetta; Cammi, Roberto
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr9904009

Vibrational studies of lithium perchlorate in propylene carbonate solutions
journal, June 1993

  • Battisti, D.; Nazri, G. A.; Klassen, B.
  • The Journal of Physical Chemistry, Vol. 97, Issue 22
  • DOI: 10.1021/j100124a007

Transport in Superconcentrated LiPF 6 and LiBF 4 /Propylene Carbonate Electrolytes
journal, October 2019


Ion Transport Mechanisms via Time-Dependent Local Structure and Dynamics in Highly Concentrated Electrolytes
journal, November 2020

  • Andersson, Rasmus; Årén, Fabian; Franco, Alejandro A.
  • Journal of The Electrochemical Society, Vol. 167, Issue 14
  • DOI: 10.1149/1945-7111/abc657

Electrochemical Modeling of Lithium-Ion Positive Electrodes during Hybrid Pulse Power Characterization Tests
journal, January 2008

  • Dees, Dennis; Gunen, Evren; Abraham, Daniel
  • Journal of The Electrochemical Society, Vol. 155, Issue 8
  • DOI: 10.1149/1.2939211

Solvation Structure and Concentration in Glyme-Based Sodium Electrolytes: A Combined Spectroscopic and Computational Study
journal, August 2016

  • Wahlers, Jessica; Fulfer, Kristen D.; Harding, Drew P.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 32
  • DOI: 10.1021/acs.jpcc.6b06160

Uncharted Waters: Super-Concentrated Electrolytes
journal, January 2020


Solvation structure in dilute to highly concentrated electrolytes for lithium-ion and sodium-ion batteries
journal, April 2017


A Critical Evaluation of the Advanced Electrolyte Model
journal, January 2018

  • Logan, E. R.; Tonita, Erin M.; Gering, K. L.
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.0471814jes

The Electrochemical Decomposition of Propylene Carbonate on Graphite
journal, January 1970

  • Dey, A. N.; Sullivan, B. P.
  • Journal of The Electrochemical Society, Vol. 117, Issue 2
  • DOI: 10.1149/1.2407470

Ion–ion interactions of LiPF6 and LiBF4 in propylene carbonate solutions
journal, September 2009

  • Takeuchi, Munetaka; Kameda, Yasuo; Umebayashi, Yasuhiro
  • Journal of Molecular Liquids, Vol. 148, Issue 2-3
  • DOI: 10.1016/j.molliq.2009.07.003

Infrared and Raman spectroscopic studies of cyclic carbonates
journal, May 1974


Correlation between Charge−Discharge Behavior of Graphite and Solvation Structure of the Lithium Ion in Propylene Carbonate-Containing Electrolytes
journal, May 2009

  • Yamada, Yuki; Koyama, Yasuhiro; Abe, Takeshi
  • The Journal of Physical Chemistry C, Vol. 113, Issue 20
  • DOI: 10.1021/jp9022458

Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
journal, May 2005


Solvation Structure of Li + in Concentrated LiPF 6 −Propylene Carbonate Solutions
journal, June 2007

  • Kameda, Yasuo; Umebayashi, Yasuhiro; Takeuchi, Munetaka
  • The Journal of Physical Chemistry B, Vol. 111, Issue 22
  • DOI: 10.1021/jp072597b

Fast Charging of Li-Ion Cells: Part IV. Temperature Effects and “Safe Lines” to Avoid Lithium Plating
journal, September 2020

  • Rodrigues, Marco-Tulio F.; Shkrob, Ilya A.; Colclasure, Andrew M.
  • Journal of The Electrochemical Society, Vol. 167, Issue 13
  • DOI: 10.1149/1945-7111/abb70d

Spectroscopic studies of ionic solvation in propylene carbonate
journal, September 1973

  • Yeager, Howard L.; Fedyk, John D.; Parker, Richard J.
  • The Journal of Physical Chemistry, Vol. 77, Issue 20
  • DOI: 10.1021/j100639a008

Behavior of Some Ions in Mixed Organic Electrolytes of High Energy Density Batteries
journal, January 1981

  • Matsuda, Yoshiharu
  • Journal of The Electrochemical Society, Vol. 128, Issue 12
  • DOI: 10.1149/1.2127289

Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells
journal, August 2002


Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF 6 in Propylene Carbonate
journal, November 2013

  • Nie, Mengyun; Abraham, Daniel P.; Seo, Daniel M.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 48
  • DOI: 10.1021/jp409765w

Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells
journal, May 2008


A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts
journal, January 1998

  • Morita, Masayuki; Asai, Yoshiko; Yoshimoto, Nobuko
  • Journal of the Chemical Society, Faraday Transactions, Vol. 94, Issue 23
  • DOI: 10.1039/a806278a

Solvation and Ion Association Studies of LiBF 4 −Propylenecarbonate and LiBF 4 −Propylenecarbonate−Trimethyl Phosphate Solutions
journal, October 2003

  • Tsunekawa, Hajime; Narumi, Akiko; Sano, Mitsuru
  • The Journal of Physical Chemistry B, Vol. 107, Issue 39
  • DOI: 10.1021/jp0300546

MCR-ALS GUI 2.0: New features and applications
journal, January 2015


Electrochemical Intercalation of Lithium Ion within Graphite from Propylene Carbonate Solutions
journal, January 2003

  • Jeong, Soon-Ki; Inaba, Minoru; Iriyama, Yasutoshi
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 1
  • DOI: 10.1149/1.1526781

Cathodic decomposition reactions of propylene carbonate
journal, December 1976


Ionic Conduction and Solution Structure in LiPF 6 and LiBF 4 Propylene Carbonate Electrolytes
journal, July 2018

  • Hwang, Sunwook; Kim, Dong-Hui; Shin, Jeong Hee
  • The Journal of Physical Chemistry C, Vol. 122, Issue 34
  • DOI: 10.1021/acs.jpcc.8b06035