DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurements of a quantum bulk acoustic resonator using a superconducting qubit

Abstract

Phonon modes at microwave frequencies can be cooled to their quantum ground state using conventional cryogenic refrigeration, providing a convenient way to study and manipulate quantum states at the single phonon level. Phonons are of particular interest because mechanical deformations can mediate interactions with a wide range of different quantum systems, including solid-state defects, superconducting qubits, and optical photons when using optomechanically active constructs. Phonons, thus, hold promise for quantum-focused applications as diverse as sensing, information processing, and communication. Here, we describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88 GHz resonant frequency, which, at cryogenic temperatures, displays large electromechanical coupling strength combined with a high intrinsic mechanical quality factor, Qi ≈ 4.3 × 104. Using a recently developed flip-chip technique, we couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate the quantum control of the mechanics in the coupled system. Furthermore, this approach promises a facile and flexible experimental approach to quantum acoustics and hybrid quantum systems.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [3];  [4]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [2]
  1. Univ. of Chicago, IL (United States)
  2. Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Univ. of Chicago, IL (United States); Univ. of California, Santa Barbara, CA (United States)
  4. Univ. of Chicago, IL (United States); Univ. Claude Bernard, Lyon (France)
  5. Univ. of Chicago, IL (United States); Univ. of California, Santa Barbara, CA (United States); Google, Santa Barbara, CA (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); U.S. Army Research Laboratory; Air Force Research Laboratory (AFRL), Air Force Office of Scientific Research (AFOSR); National Science Foundation (NSF); Argonne National Laboratory, Laboratory Directed Research and Development (LDRD)
OSTI Identifier:
1797929
Alternate Identifier(s):
OSTI ID: 1737862
Grant/Contract Number:  
AC02-06CH11357; LDRD 2017-092-N0
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 117; Journal Issue: 25; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Cryogenics; Quantum mechanical systems and processes; Phonons; Acoustic resonators; Microwave frequencies; Flip chip

Citation Formats

Chou, M. -H., Dumur, É., Zhong, Y. P., Peairs, G. A., Bienfait, A., Chang, H. -S., Conner, C. R., Grebel, J., Povey, R. G., Satzinger, K. J., and Cleland, A. N. Measurements of a quantum bulk acoustic resonator using a superconducting qubit. United States: N. p., 2020. Web. doi:10.1063/5.0023827.
Chou, M. -H., Dumur, É., Zhong, Y. P., Peairs, G. A., Bienfait, A., Chang, H. -S., Conner, C. R., Grebel, J., Povey, R. G., Satzinger, K. J., & Cleland, A. N. Measurements of a quantum bulk acoustic resonator using a superconducting qubit. United States. https://doi.org/10.1063/5.0023827
Chou, M. -H., Dumur, É., Zhong, Y. P., Peairs, G. A., Bienfait, A., Chang, H. -S., Conner, C. R., Grebel, J., Povey, R. G., Satzinger, K. J., and Cleland, A. N. Mon . "Measurements of a quantum bulk acoustic resonator using a superconducting qubit". United States. https://doi.org/10.1063/5.0023827. https://www.osti.gov/servlets/purl/1797929.
@article{osti_1797929,
title = {Measurements of a quantum bulk acoustic resonator using a superconducting qubit},
author = {Chou, M. -H. and Dumur, É. and Zhong, Y. P. and Peairs, G. A. and Bienfait, A. and Chang, H. -S. and Conner, C. R. and Grebel, J. and Povey, R. G. and Satzinger, K. J. and Cleland, A. N.},
abstractNote = {Phonon modes at microwave frequencies can be cooled to their quantum ground state using conventional cryogenic refrigeration, providing a convenient way to study and manipulate quantum states at the single phonon level. Phonons are of particular interest because mechanical deformations can mediate interactions with a wide range of different quantum systems, including solid-state defects, superconducting qubits, and optical photons when using optomechanically active constructs. Phonons, thus, hold promise for quantum-focused applications as diverse as sensing, information processing, and communication. Here, we describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88 GHz resonant frequency, which, at cryogenic temperatures, displays large electromechanical coupling strength combined with a high intrinsic mechanical quality factor, Qi ≈ 4.3 × 104. Using a recently developed flip-chip technique, we couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate the quantum control of the mechanics in the coupled system. Furthermore, this approach promises a facile and flexible experimental approach to quantum acoustics and hybrid quantum systems.},
doi = {10.1063/5.0023827},
journal = {Applied Physics Letters},
number = 25,
volume = 117,
place = {United States},
year = {Mon Dec 21 00:00:00 EST 2020},
month = {Mon Dec 21 00:00:00 EST 2020}
}

Works referenced in this record:

Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device
journal, July 2016

  • Vainsencher, Amit; Satzinger, K. J.; Peairs, G. A.
  • Applied Physics Letters, Vol. 109, Issue 3
  • DOI: 10.1063/1.4955408

Nano-acoustic resonator with ultralong phonon lifetime
journal, November 2020


Quantum Erasure Using Entangled Surface Acoustic Phonons
journal, June 2020


Propagating phonons coupled to an artificial atom
journal, September 2014


Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits
journal, August 2013


Planar superconducting resonators with internal quality factors above one million
journal, March 2012

  • Megrant, A.; Neill, C.; Barends, R.
  • Applied Physics Letters, Vol. 100, Issue 11
  • DOI: 10.1063/1.3693409

Epitaxial bulk acoustic wave resonators as highly coherent multi-phonon sources for quantum acoustodynamics
journal, May 2020


Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics
journal, February 2019

  • Whiteley, Samuel J.; Wolfowicz, Gary; Anderson, Christopher P.
  • Nature Physics, Vol. 15, Issue 5
  • DOI: 10.1038/s41567-019-0420-0

Sideband Control of a Multimode Quantum Bulk Acoustic System
journal, November 2020


Phonon-mediated quantum state transfer and remote qubit entanglement
journal, April 2019


Remote quantum entanglement between two micromechanical oscillators
journal, April 2018


Observation of Quantum Motion of a Nanomechanical Resonator
journal, January 2012


Quantum ground state and single-phonon control of a mechanical resonator
journal, March 2010

  • O’Connell, A. D.; Hofheinz, M.; Ansmann, M.
  • Nature, Vol. 464, Issue 7289
  • DOI: 10.1038/nature08967

Resolving Phonon Fock States in a Multimode Cavity with a Double-Slit Qubit
journal, June 2019


Innovative technique for tailoring intrinsic stress in reactively sputtered piezoelectric aluminum nitride films
journal, May 2009

  • Felmetsger, V. V.; Laptev, P. N.; Tanner, S. M.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 27, Issue 3
  • DOI: 10.1116/1.3089242

Quantum sensing
journal, July 2017


Quantum technologies with hybrid systems
journal, March 2015

  • Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 13
  • DOI: 10.1073/pnas.1419326112

Two-dimensional optomechanical crystal cavity with high quantum cooperativity
journal, July 2020

  • Ren, Hengjiang; Matheny, Matthew H.; MacCabe, Gregory S.
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-020-17182-9

Engineering Electron–Phonon Coupling of Quantum Defects to a Semiconfocal Acoustic Resonator
journal, September 2019


Laser cooling of a nanomechanical oscillator into its quantum ground state
journal, October 2011

  • Chan, Jasper; Alegre, T. P. Mayer; Safavi-Naeini, Amir H.
  • Nature, Vol. 478, Issue 7367
  • DOI: 10.1038/nature10461

Nanomechanical coupling between microwave and optical photons
journal, September 2013

  • Bochmann, Joerg; Vainsencher, Amit; Awschalom, David D.
  • Nature Physics, Vol. 9, Issue 11
  • DOI: 10.1038/nphys2748

Simple non-galvanic flip-chip integration method for hybrid quantum systems
journal, April 2019

  • Satzinger, K. J.; Conner, C. R.; Bienfait, A.
  • Applied Physics Letters, Vol. 114, Issue 17
  • DOI: 10.1063/1.5089888

Charge-insensitive qubit design derived from the Cooper pair box
journal, October 2007


Bulk crystalline optomechanics
journal, April 2018


Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator
journal, September 2017


Hybrid quantum systems with circuit quantum electrodynamics
journal, March 2020


Resolving the energy levels of a nanomechanical oscillator
journal, July 2019


Storing quantum information in spins and high-sensitivity ESR
journal, February 2018


Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems
journal, April 2013


Quantum control of surface acoustic-wave phonons
journal, November 2018


Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator
journal, November 2018


Quantum acoustics with superconducting qubits
journal, September 2017


Cavity optomechanics
journal, December 2014

  • Aspelmeyer, Markus; Kippenberg, Tobias J.; Marquardt, Florian
  • Reviews of Modern Physics, Vol. 86, Issue 4
  • DOI: 10.1103/RevModPhys.86.1391