DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems

Authors:
ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1787714
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Computational and Applied Mathematics
Additional Journal Information:
Journal Name: Journal of Computational and Applied Mathematics Journal Volume: 398 Journal Issue: C; Journal ID: ISSN 0377-0427
Publisher:
Elsevier
Country of Publication:
Belgium
Language:
English

Citation Formats

Esquivel, Hugo, Prakash, Arun, and Lin, Guang. Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems. Belgium: N. p., 2021. Web. doi:10.1016/j.cam.2021.113674.
Esquivel, Hugo, Prakash, Arun, & Lin, Guang. Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems. Belgium. https://doi.org/10.1016/j.cam.2021.113674
Esquivel, Hugo, Prakash, Arun, and Lin, Guang. Wed . "Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems". Belgium. https://doi.org/10.1016/j.cam.2021.113674.
@article{osti_1787714,
title = {Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems},
author = {Esquivel, Hugo and Prakash, Arun and Lin, Guang},
abstractNote = {},
doi = {10.1016/j.cam.2021.113674},
journal = {Journal of Computational and Applied Mathematics},
number = C,
volume = 398,
place = {Belgium},
year = {2021},
month = {12}
}

Works referenced in this record:

Long-term behavior of polynomial chaos in stochastic flow simulations
journal, August 2006

  • Wan, Xiaoliang; Karniadakis, George Em
  • Computer Methods in Applied Mechanics and Engineering, Vol. 195, Issue 41-43
  • DOI: 10.1016/j.cma.2005.10.016

An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations
journal, May 2009


A convergence study for SPDEs using combined Polynomial Chaos and Dynamically-Orthogonal schemes
journal, July 2013

  • Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em
  • Journal of Computational Physics, Vol. 245
  • DOI: 10.1016/j.jcp.2013.02.047

The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications
journal, November 2008

  • Foo, Jasmine; Wan, Xiaoliang; Karniadakis, George Em
  • Journal of Computational Physics, Vol. 227, Issue 22
  • DOI: 10.1016/j.jcp.2008.07.009

Long-time uncertainty propagation using generalized polynomial chaos and flow map composition
journal, October 2014

  • Luchtenburg, Dirk M.; Brunton, Steven L.; Rowley, Clarence W.
  • Journal of Computational Physics, Vol. 274
  • DOI: 10.1016/j.jcp.2014.06.029

Sparse grids
journal, May 2004


Time-dependent generalized polynomial chaos
journal, November 2010

  • Gerritsma, Marc; van der Steen, Jan-Bart; Vos, Peter
  • Journal of Computational Physics, Vol. 229, Issue 22
  • DOI: 10.1016/j.jcp.2010.07.020

High dimensional integration of smooth functions over cubes
journal, November 1996


NGA-West2 Database
journal, August 2014

  • Ancheta, Timothy D.; Darragh, Robert B.; Stewart, Jonathan P.
  • Earthquake Spectra, Vol. 30, Issue 3
  • DOI: 10.1193/070913EQS197M

Uncertainty quantification in simulations of power systems: Multi-element polynomial chaos methods
journal, June 2010

  • Prempraneerach, P.; Hover, F. S.; Triantafyllou, M. S.
  • Reliability Engineering & System Safety, Vol. 95, Issue 6
  • DOI: 10.1016/j.ress.2010.01.012

Multi-element probabilistic collocation method in high dimensions
journal, March 2010


A Hybrid Generalized Polynomial Chaos Method for Stochastic Dynamical Systems
journal, January 2014


The Homogeneous Chaos
journal, October 1938

  • Wiener, Norbert
  • American Journal of Mathematics, Vol. 60, Issue 4
  • DOI: 10.2307/2371268

The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations
journal, January 2002


A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations
journal, June 2013


A Method of Computation for Structural Dynamics
journal, July 1959

  • Newmark, Nathan M.
  • Journal of the Engineering Mechanics Division, Vol. 85, Issue 3
  • DOI: 10.1061/JMCEA3.0000098

Polynomial Chaos in Stochastic Finite Elements
journal, March 1990

  • Ghanem, Roger; Spanos, P. D.
  • Journal of Applied Mechanics, Vol. 57, Issue 1
  • DOI: 10.1115/1.2888303

Dynamically orthogonal field equations for continuous stochastic dynamical systems
journal, December 2009

  • Sapsis, Themistoklis P.; Lermusiaux, Pierre F. J.
  • Physica D: Nonlinear Phenomena, Vol. 238, Issue 23-24
  • DOI: 10.1016/j.physd.2009.09.017

Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions
journal, June 2013


Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures
journal, January 2006

  • Wan, Xiaoliang; Karniadakis, George Em
  • SIAM Journal on Scientific Computing, Vol. 28, Issue 3
  • DOI: 10.1137/050627630

Error Analysis of the Dynamically Orthogonal Approximation of Time Dependent Random PDEs
journal, January 2015

  • Musharbash, E.; Nobile, F.; Zhou, T.
  • SIAM Journal on Scientific Computing, Vol. 37, Issue 2
  • DOI: 10.1137/140967787

Constructing Least-Squares Polynomial Approximations
journal, January 2020

  • Guo, Ling; Narayan, Akil; Zhou, Tao
  • SIAM Review, Vol. 62, Issue 2
  • DOI: 10.1137/18M1234151

An adaptive multi-element generalized polynomial chaos method for stochastic differential equations
journal, November 2005


A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties
journal, November 2009


Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows
journal, January 2013

  • Ueckermann, M. P.; Lermusiaux, P. F. J.; Sapsis, T. P.
  • Journal of Computational Physics, Vol. 233
  • DOI: 10.1016/j.jcp.2012.08.041

A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms
journal, June 2013


Dynamical Polynomial Chaos Expansions and Long Time Evolution of Differential Equations with Random Forcing
journal, January 2016

  • Ozen, H. Cagan; Bal, Guillaume
  • SIAM/ASA Journal on Uncertainty Quantification, Vol. 4, Issue 1
  • DOI: 10.1137/15M1019167

On the convergence of generalized polynomial chaos expansions
journal, October 2011

  • Ernst, Oliver G.; Mugler, Antje; Starkloff, Hans-Jörg
  • ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 46, Issue 2
  • DOI: 10.1051/m2an/2011045