DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diagnosing plasma magnetization in inertial confinement fusion implosions using secondary deuterium-tritium reactions

Abstract

Diagnosing plasma magnetization in inertial confinement fusion implosions is important for understanding how magnetic fields affect implosion dynamics and to assess plasma conditions in magnetized implosion experiments. Secondary deuterium–tritium (DT) reactions provide two diagnostic signatures to infer neutron-averaged magnetization. Magnetically confining fusion tritons from deuterium–deuterium (DD) reactions in the hot spot increases their path lengths and energy loss, leading to an increase in the secondary DT reaction yield. In addition, the distribution of magnetically confined DD-triton is anisotropic, and this drives anisotropy in the secondary DT neutron spectra along different lines of sight. Implosion parameter space as well as sensitivity to the applied B-field, fuel ρR, temperature, and hot-spot shape will be examined using Monte Carlo and 2D radiation-magnetohydrodynamic simulations.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
  3. Imperial College, London (United Kingdom). The Centre for Inertial Fusion Studies, The Blackett Lab.
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1787218
Alternate Identifier(s):
OSTI ID: 1777578
Report Number(s):
LLNL-JRNL-818043
Journal ID: ISSN 0034-6748; 1028402; TRN: US2210424
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 92; Journal Issue: 4; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Neutron spectra; Monte Carlo methods; plasma confinement; nuclear fusion

Citation Formats

Sio, H., Moody, J. D., Ho, D. D., Pollock, B. B., Walsh, C. A., Lahmann, B., Strozzi, D. J., Kemp, G. E., Hsing, W. W., Crilly, A., Chittenden, J. P., and Appelbe, B. Diagnosing plasma magnetization in inertial confinement fusion implosions using secondary deuterium-tritium reactions. United States: N. p., 2021. Web. doi:10.1063/5.0043381.
Sio, H., Moody, J. D., Ho, D. D., Pollock, B. B., Walsh, C. A., Lahmann, B., Strozzi, D. J., Kemp, G. E., Hsing, W. W., Crilly, A., Chittenden, J. P., & Appelbe, B. Diagnosing plasma magnetization in inertial confinement fusion implosions using secondary deuterium-tritium reactions. United States. https://doi.org/10.1063/5.0043381
Sio, H., Moody, J. D., Ho, D. D., Pollock, B. B., Walsh, C. A., Lahmann, B., Strozzi, D. J., Kemp, G. E., Hsing, W. W., Crilly, A., Chittenden, J. P., and Appelbe, B. Thu . "Diagnosing plasma magnetization in inertial confinement fusion implosions using secondary deuterium-tritium reactions". United States. https://doi.org/10.1063/5.0043381. https://www.osti.gov/servlets/purl/1787218.
@article{osti_1787218,
title = {Diagnosing plasma magnetization in inertial confinement fusion implosions using secondary deuterium-tritium reactions},
author = {Sio, H. and Moody, J. D. and Ho, D. D. and Pollock, B. B. and Walsh, C. A. and Lahmann, B. and Strozzi, D. J. and Kemp, G. E. and Hsing, W. W. and Crilly, A. and Chittenden, J. P. and Appelbe, B.},
abstractNote = {Diagnosing plasma magnetization in inertial confinement fusion implosions is important for understanding how magnetic fields affect implosion dynamics and to assess plasma conditions in magnetized implosion experiments. Secondary deuterium–tritium (DT) reactions provide two diagnostic signatures to infer neutron-averaged magnetization. Magnetically confining fusion tritons from deuterium–deuterium (DD) reactions in the hot spot increases their path lengths and energy loss, leading to an increase in the secondary DT reaction yield. In addition, the distribution of magnetically confined DD-triton is anisotropic, and this drives anisotropy in the secondary DT neutron spectra along different lines of sight. Implosion parameter space as well as sensitivity to the applied B-field, fuel ρR, temperature, and hot-spot shape will be examined using Monte Carlo and 2D radiation-magnetohydrodynamic simulations.},
doi = {10.1063/5.0043381},
journal = {Review of Scientific Instruments},
number = 4,
volume = 92,
place = {United States},
year = {Thu Apr 15 00:00:00 EDT 2021},
month = {Thu Apr 15 00:00:00 EDT 2021}
}

Works referenced in this record:

Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser
journal, May 2012

  • Hohenberger, M.; Chang, P. -Y.; Fiksel, G.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3696032

Fusion Yield Enhancement in Magnetized Laser-Driven Implosions
journal, July 2011


The ignition design space of magnetized target fusion
journal, December 2015


Compressing magnetic fields with high-energy lasers
journal, May 2010

  • Knauer, J. P.; Gotchev, O. V.; Chang, P. Y.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3416557

Charged-particle stopping powers in inertial confinement fusion plasmas
journal, May 1993


Quasi-monoenergetic spectra from reactions in a beam-target plasma
journal, July 2012

  • Appelbe, B.; Chittenden, J.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4739767

Absolute calibration of the continuum x-ray spectrometer (ConSpec) at the National Ignition Facility
journal, December 2019


Observation of a Reflected Shock in an Indirectly Driven Spherical Implosion at the National Ignition Facility
journal, June 2014


The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion
journal, June 2017

  • Perkins, L. J.; Ho, D. D. -M; Logan, B. G.
  • Physics of Plasmas, Vol. 24, Issue 6
  • DOI: 10.1063/1.4985150

The effects of magnetic field topology on secondary neutron spectra in Magnetized Liner Inertial Fusion
journal, March 2017


Neutron spectra from inertial confinement fusion targets for measurement of fuel areal density and charged particle stopping powers
journal, September 1987

  • Cable, M. D.; Hatchett, S. P.
  • Journal of Applied Physics, Vol. 62, Issue 6
  • DOI: 10.1063/1.339850

Transient magnetic field diffusion considerations relevant to magnetically assisted indirect drive inertial confinement fusion
journal, November 2020

  • Moody, J. D.; Johnson, A.; Javedani, J.
  • Physics of Plasmas, Vol. 27, Issue 11
  • DOI: 10.1063/5.0022722

Effects of magnetization on fusion product trapping and secondary neutron spectraa)
journal, May 2015

  • Knapp, P. F.; Schmit, P. F.; Hansen, S. B.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920948

The National Ignition Facility neutron time-of-flight system and its initial performance (invited)
journal, October 2010

  • Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3492351

The Physics of Inertial Fusion
book, January 2004


Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science
journal, October 2012

  • Seguin, F. H.; Sinenian, N.; Rosenberg, M.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4732065

Fusion neutron energies and spectra
journal, July 1973