DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Voltage Aqueous Redox Flow Batteries Enabled by Catalyzed Water Dissociation and Acid–Base Neutralization in Bipolar Membranes

Abstract

Aqueous redox flow batteries that employ organic molecules as redox couples hold great promise for mitigating the intermittency of renewable electricity through efficient, low-cost diurnal storage. However, low cell potentials and sluggish ion transport often limit the achievable power density. Here, we explore bipolar membrane (BPM)-enabled acid–base redox flow batteries in which the positive and negative electrodes operate in the alkaline and acidic electrolytes, respectively. This new configuration adds the potential arising from the pH difference across the membrane and enables an open circuit voltage of ~1.6 V. In contrast, the same redox molecules operating at a single pH generate ~0.9 V. Ion transport in the BPM is coupled to the water dissociation and acid–base neutralization reactions. Interestingly, experiments and numerical modeling show that both of these processes must be catalyzed in order for the battery to function efficiently. The acid–base concept provides a potentially powerful approach to increase the energy storage capacity of aqueous redox flow batteries, and insights into the catalysis of the water dissociation and neutralization reactions in BPMs may be applicable to related electrochemical energy conversion devices.

Authors:
 [1];  [2];  [1]; ORCiD logo [1];  [1];  [2]; ORCiD logo [1]
  1. Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
  2. Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
Publication Date:
Research Org.:
Univ. of Pennsylvania, Philadelphia, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1785157
Alternate Identifier(s):
OSTI ID: 1798268; OSTI ID: 1798269
Grant/Contract Number:  
SC0019445; AR0001035
Resource Type:
Published Article
Journal Name:
ACS Central Science
Additional Journal Information:
Journal Name: ACS Central Science Journal Volume: 7 Journal Issue: 6; Journal ID: ISSN 2374-7943
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Redox reactions; Dissociation; Catalysts; Batteries; Electrolytes

Citation Formats

Yan, Zhifei, Wycisk, Ryszard J., Metlay, Amy S., Xiao, Langqiu, Yoon, Yein, Pintauro, Peter N., and Mallouk, Thomas E. High-Voltage Aqueous Redox Flow Batteries Enabled by Catalyzed Water Dissociation and Acid–Base Neutralization in Bipolar Membranes. United States: N. p., 2021. Web. doi:10.1021/acscentsci.1c00217.
Yan, Zhifei, Wycisk, Ryszard J., Metlay, Amy S., Xiao, Langqiu, Yoon, Yein, Pintauro, Peter N., & Mallouk, Thomas E. High-Voltage Aqueous Redox Flow Batteries Enabled by Catalyzed Water Dissociation and Acid–Base Neutralization in Bipolar Membranes. United States. https://doi.org/10.1021/acscentsci.1c00217
Yan, Zhifei, Wycisk, Ryszard J., Metlay, Amy S., Xiao, Langqiu, Yoon, Yein, Pintauro, Peter N., and Mallouk, Thomas E. Fri . "High-Voltage Aqueous Redox Flow Batteries Enabled by Catalyzed Water Dissociation and Acid–Base Neutralization in Bipolar Membranes". United States. https://doi.org/10.1021/acscentsci.1c00217.
@article{osti_1785157,
title = {High-Voltage Aqueous Redox Flow Batteries Enabled by Catalyzed Water Dissociation and Acid–Base Neutralization in Bipolar Membranes},
author = {Yan, Zhifei and Wycisk, Ryszard J. and Metlay, Amy S. and Xiao, Langqiu and Yoon, Yein and Pintauro, Peter N. and Mallouk, Thomas E.},
abstractNote = {Aqueous redox flow batteries that employ organic molecules as redox couples hold great promise for mitigating the intermittency of renewable electricity through efficient, low-cost diurnal storage. However, low cell potentials and sluggish ion transport often limit the achievable power density. Here, we explore bipolar membrane (BPM)-enabled acid–base redox flow batteries in which the positive and negative electrodes operate in the alkaline and acidic electrolytes, respectively. This new configuration adds the potential arising from the pH difference across the membrane and enables an open circuit voltage of ~1.6 V. In contrast, the same redox molecules operating at a single pH generate ~0.9 V. Ion transport in the BPM is coupled to the water dissociation and acid–base neutralization reactions. Interestingly, experiments and numerical modeling show that both of these processes must be catalyzed in order for the battery to function efficiently. The acid–base concept provides a potentially powerful approach to increase the energy storage capacity of aqueous redox flow batteries, and insights into the catalysis of the water dissociation and neutralization reactions in BPMs may be applicable to related electrochemical energy conversion devices.},
doi = {10.1021/acscentsci.1c00217},
journal = {ACS Central Science},
number = 6,
volume = 7,
place = {United States},
year = {Fri May 28 00:00:00 EDT 2021},
month = {Fri May 28 00:00:00 EDT 2021}
}

Works referenced in this record:

Performance of an environmentally benign acid base flow battery at high energy density
journal, December 2017

  • van Egmond, W. J.; Saakes, M.; Noor, I.
  • International Journal of Energy Research, Vol. 42, Issue 4
  • DOI: 10.1002/er.3941

A multiple ion-exchange membrane design for redox flow batteries
journal, January 2014

  • Gu, Shuang; Gong, Ke; Yan, Emily Z.
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE00165F

Hybrid Anion and Proton Exchange Membrane Fuel Cells
journal, June 2009

  • Ünlü, Murat; Zhou, Junfeng; Kohl, Paul A.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 26
  • DOI: 10.1021/jp903252u

Sulfonated Microporous Polymer Membranes with Fast and Selective Ion Transport for Electrochemical Energy Conversion and Storage
journal, March 2020

  • Zuo, Peipei; Li, Yuanyuan; Wang, Anqi
  • Angewandte Chemie International Edition, Vol. 59, Issue 24
  • DOI: 10.1002/anie.202000012

Design Rules for Membranes from Polymers of Intrinsic Microporosity for Crossover-free Aqueous Electrochemical Devices
journal, December 2019


Reduced Ion Crossover in Bipolar Membrane Electrolysis via Increased Current Density, Molecular Size, and Valence
journal, May 2020

  • Blommaert, Marijn A.; Verdonk, Joost A. H.; Blommaert, Hester C. B.
  • ACS Applied Energy Materials, Vol. 3, Issue 6
  • DOI: 10.1021/acsaem.0c00687

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes
journal, January 2018

  • Yan, Zhifei; Zhu, Liang; Li, Yuguang C.
  • Energy & Environmental Science, Vol. 11, Issue 8
  • DOI: 10.1039/C8EE01192C

Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells
journal, February 2019


Flow battery based on reverse electrodialysis with bipolar membranes: Single cell experiments
journal, November 2018


High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries
journal, January 2018


A Dual Electrolyte H 2 /O 2 Planar Membraneless Microchannel Fuel Cell System with Open Circuit Potentials in Excess of 1.4 V
journal, March 2005

  • Cohen, Jamie L.; Volpe, David J.; Westly, Daron A.
  • Langmuir, Vol. 21, Issue 8
  • DOI: 10.1021/la0479307

A Long-Lifetime All-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical
journal, July 2019


An Acid-Base Electrochemical Flow Battery as energy storage system
journal, October 2016


A mixed-pH dual-electrolyte microfluidic aluminum–air cell with high performance
journal, January 2017


Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage
journal, December 2019


Assessing the Utility of Bipolar Membranes for use in Photoelectrochemical Water-Splitting Cells
journal, September 2014

  • Vargas-Barbosa, Nella M.; Geise, Geoffrey M.; Hickner, Michael A.
  • ChemSusChem, Vol. 7, Issue 11
  • DOI: 10.1002/cssc.201402535

High-Performance Bipolar Membrane Development for Improved Water Dissociation
journal, August 2020

  • Chen, Yingying; Wrubel, Jacob A.; Klein, W. Ellis
  • ACS Applied Polymer Materials, Vol. 2, Issue 11
  • DOI: 10.1021/acsapm.0c00653

Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications
journal, February 2017

  • Sevov, Christo S.; Hickey, David P.; Cook, Monique E.
  • Journal of the American Chemical Society, Vol. 139, Issue 8
  • DOI: 10.1021/jacs.7b00147

Low-Potential Pyridinium Anolyte for Aqueous Redox Flow Batteries
journal, October 2017

  • Sevov, Christo S.; Hendriks, Koen H.; Sanford, Melanie S.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 44
  • DOI: 10.1021/acs.jpcc.7b06247

A zinc–iron redox-flow battery under $100 per kW h of system capital cost
journal, January 2015

  • Gong, Ke; Ma, Xiaoya; Conforti, Kameron M.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE02315G

A 1.51 V pH neutral redox flow battery towards scalable energy storage
journal, January 2019

  • Luo, Jian; Wu, Wenda; Debruler, Camden
  • Journal of Materials Chemistry A, Vol. 7, Issue 15
  • DOI: 10.1039/C9TA01469A

An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System
journal, October 2016

  • Janoschka, Tobias; Martin, Norbert; Hager, Martin D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 46
  • DOI: 10.1002/anie.201606472

Alkaline quinone flow battery
journal, September 2015


Membraneless, Room-Temperature, Direct Borohydride/Cerium Fuel Cell with Power Density of Over 0.25 W/cm 2
journal, March 2012

  • Mota, Nicolas Da; Finkelstein, David A.; Kirtland, Joseph D.
  • Journal of the American Chemical Society, Vol. 134, Issue 14
  • DOI: 10.1021/ja211751k

Bipolar Membrane-Assisted Solar Water Splitting in Optimal pH
journal, April 2016

  • Luo, Jingshan; Vermaas, David A.; Bi, Dongqin
  • Advanced Energy Materials, Vol. 6, Issue 13
  • DOI: 10.1002/aenm.201600100

Accelerating water dissociation in bipolar membranes and for electrocatalysis
journal, July 2020

  • Oener, Sebastian Z.; Foster, Marc J.; Boettcher, Shannon W.
  • Science, Vol. 369, Issue 6507
  • DOI: 10.1126/science.aaz1487

Understanding Transport at the Acid-Alkaline Interface of Bipolar Membranes
journal, January 2016

  • Grew, Kyle N.; McClure, Joshua P.; Chu, Deryn
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0941614jes

Electrical equivalent circuit of an ion-exchange membrane system
journal, January 2011


Use of Bipolar Membranes for Maintaining Steady-State pH Gradients in Membrane-Supported, Solar-Driven Water Splitting
journal, September 2014

  • McDonald, Michael B.; Ardo, Shane; Lewis, Nathan S.
  • ChemSusChem, Vol. 7, Issue 11
  • DOI: 10.1002/cssc.201402288

On the recombination of hydronium and hydroxide ions in water
journal, December 2011

  • Hassanali, A.; Prakash, M. K.; Eshet, H.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 51
  • DOI: 10.1073/pnas.1112486108

Recent Advances in Bipolar Membrane Design and Applications
journal, September 2020


Flow Batteries: Current Status and Trends
journal, September 2015

  • Soloveichik, Grigorii L.
  • Chemical Reviews, Vol. 115, Issue 20
  • DOI: 10.1021/cr500720t

Proof-of-concept experiments of an acid-base junction flow battery by reverse bipolar electrodialysis for an energy conversion system
journal, November 2016


Autoionization in Liquid Water
journal, March 2001


Renewable electricity storage using electrolysis
journal, December 2019

  • Yan, Zhifei; Hitt, Jeremy L.; Turner, John A.
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 23
  • DOI: 10.1073/pnas.1821686116

A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909