DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser-heated capillary discharge waveguides as tunable structures for laser-plasma acceleration

Abstract

Laser-heated capillary discharge waveguides are novel, low plasma density guiding structures able to guide intense laser pulses over many diffraction lengths and have recently enabled the acceleration of electrons to 7.8 GeV by using a laser-plasma accelerator (LPA). These devices represent an improvement over conventional capillary discharge waveguides, as the channel matched spot size and plasma density can be tuned independently of the capillary radius. This has allowed the guiding of petawatt-scale pulses focused to small spot sizes within large diameter capillaries, preventing laser damage of the capillary structure. High performance channel-guided LPAs require control of matched spot size and density, which experiments and simulations reported here show can be tuned over a wide range via initial discharge and laser parameters. In this paper, measurements of the matched spot size and plasma density in laser-heated capillary discharges are presented, which are found to be in excellent agreement with simulations performed using the MHD code MARPLE. Strategies for optimizing accelerator performance are identified based on these results.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [2];  [3];  [3]; ORCiD logo [3];  [4]; ORCiD logo [5]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [2];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Russian Academy of Sciences (RAS), Moscow (Russia). Keldysh Institute of Applied Mathematics
  4. Institute of Physics ASCR, v.v.i. (FZU), Prague (Czech Republic)
  5. Russian Academy of Sciences (RAS), Moscow (Russia). Keldysh Institute of Applied Mathematics; Institute of Physics ASCR, v.v.i. (FZU), Prague (Czech Republic)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); National Science Foundation (NSF); European Regional Development Fund (ERDF); Russian Foundation for Basic Research (RFBR)
OSTI Identifier:
1782178
Alternate Identifier(s):
OSTI ID: 1657283
Grant/Contract Number:  
AC02-05CH11231; FG02-12ER41798; PHY-1415596; PHY-1632796
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 27; Journal Issue: 9; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Density measurement; Plasma dynamics; Plasma temperature; Plasma acceleration; Plasma properties and parameters; Interferometry; Laser applications; Laser plasma interactions; Bremsstrahlung

Citation Formats

Pieronek, C. V., Gonsalves, A. J., Benedetti, C., Bulanov, S. S., van Tilborg, J., Bin, J. H., Swanson, K. K., Daniels, J., Bagdasarov, G. A., Bobrova, N. A., Gasilov, V. A., Korn, G., Sasorov, P. V., Geddes, C. G. R., Schroeder, C. B., Leemans, W. P., and Esarey, E. Laser-heated capillary discharge waveguides as tunable structures for laser-plasma acceleration. United States: N. p., 2020. Web. doi:10.1063/5.0014961.
Pieronek, C. V., Gonsalves, A. J., Benedetti, C., Bulanov, S. S., van Tilborg, J., Bin, J. H., Swanson, K. K., Daniels, J., Bagdasarov, G. A., Bobrova, N. A., Gasilov, V. A., Korn, G., Sasorov, P. V., Geddes, C. G. R., Schroeder, C. B., Leemans, W. P., & Esarey, E. Laser-heated capillary discharge waveguides as tunable structures for laser-plasma acceleration. United States. https://doi.org/10.1063/5.0014961
Pieronek, C. V., Gonsalves, A. J., Benedetti, C., Bulanov, S. S., van Tilborg, J., Bin, J. H., Swanson, K. K., Daniels, J., Bagdasarov, G. A., Bobrova, N. A., Gasilov, V. A., Korn, G., Sasorov, P. V., Geddes, C. G. R., Schroeder, C. B., Leemans, W. P., and Esarey, E. Tue . "Laser-heated capillary discharge waveguides as tunable structures for laser-plasma acceleration". United States. https://doi.org/10.1063/5.0014961. https://www.osti.gov/servlets/purl/1782178.
@article{osti_1782178,
title = {Laser-heated capillary discharge waveguides as tunable structures for laser-plasma acceleration},
author = {Pieronek, C. V. and Gonsalves, A. J. and Benedetti, C. and Bulanov, S. S. and van Tilborg, J. and Bin, J. H. and Swanson, K. K. and Daniels, J. and Bagdasarov, G. A. and Bobrova, N. A. and Gasilov, V. A. and Korn, G. and Sasorov, P. V. and Geddes, C. G. R. and Schroeder, C. B. and Leemans, W. P. and Esarey, E.},
abstractNote = {Laser-heated capillary discharge waveguides are novel, low plasma density guiding structures able to guide intense laser pulses over many diffraction lengths and have recently enabled the acceleration of electrons to 7.8 GeV by using a laser-plasma accelerator (LPA). These devices represent an improvement over conventional capillary discharge waveguides, as the channel matched spot size and plasma density can be tuned independently of the capillary radius. This has allowed the guiding of petawatt-scale pulses focused to small spot sizes within large diameter capillaries, preventing laser damage of the capillary structure. High performance channel-guided LPAs require control of matched spot size and density, which experiments and simulations reported here show can be tuned over a wide range via initial discharge and laser parameters. In this paper, measurements of the matched spot size and plasma density in laser-heated capillary discharges are presented, which are found to be in excellent agreement with simulations performed using the MHD code MARPLE. Strategies for optimizing accelerator performance are identified based on these results.},
doi = {10.1063/5.0014961},
journal = {Physics of Plasmas},
number = 9,
volume = 27,
place = {United States},
year = {Tue Sep 01 00:00:00 EDT 2020},
month = {Tue Sep 01 00:00:00 EDT 2020}
}

Works referenced in this record:

Efficient Modeling of Laser-Plasma Accelerators with INF&RNO
conference, January 2010

  • Benedetti, C.; Schroeder, C. B.; Esarey, E.
  • ADVANCED ACCELERATOR CONCEPTS: 14th Advanced Accelerator Concepts Workshop, AIP Conference Proceedings
  • DOI: 10.1063/1.3520323

Plasma density diagnostic for capillary-discharge based plasma channels
journal, July 2015

  • Daniels, J.; van Tilborg, J.; Gonsalves, A. J.
  • Physics of Plasmas, Vol. 22, Issue 7
  • DOI: 10.1063/1.4926825

Quasi-matched propagation of ultra-short, intense laser pulses in plasma channels
journal, May 2012

  • Benedetti, C.; Schroeder, C. B.; Esarey, E.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4707393

Pulse evolution and plasma-wave phase velocity in channel-guided laser-plasma accelerators
journal, August 2015


Investigation of a hydrogen plasma waveguide
journal, December 2000


An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators
journal, October 2017

  • Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 1
  • DOI: 10.1088/1361-6587/aa8977

Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime
journal, December 2014


Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications
journal, August 2017

  • Bagdasarov, G. A.; Sasorov, P. V.; Gasilov, V. A.
  • Physics of Plasmas, Vol. 24, Issue 8
  • DOI: 10.1063/1.4997606

Laser-wakefield acceleration of electron beams in a low density plasma channel
journal, March 2010

  • Ibbotson, T. P. A.; Bourgeois, N.; Rowlands-Rees, T. P.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 13, Issue 3
  • DOI: 10.1103/PhysRevSTAB.13.031301

Measurement of the laser-pulse group velocity in plasma waveguides
journal, June 2014


Density characterization of discharged gas-filled capillaries through common-path two-color spectral-domain interferometry
journal, January 2018

  • van Tilborg, J.; Gonsalves, A. J.; Esarey, E. H.
  • Optics Letters, Vol. 43, Issue 12
  • DOI: 10.1364/OL.43.002776

Laser-heater assisted plasma channel formation in capillary discharge waveguides
journal, February 2013

  • Bobrova, N. A.; Sasorov, P. V.; Benedetti, C.
  • Physics of Plasmas, Vol. 20, Issue 2
  • DOI: 10.1063/1.4793447

Electron-ion relaxation in a plasma interacting with an intense laser field
journal, January 1994


Guiding of laser pulses in plasma channels created by the ignitor-heater technique
journal, May 1999

  • Volfbeyn, P.; Esarey, E.; Leemans, W. P.
  • Physics of Plasmas, Vol. 6, Issue 5
  • DOI: 10.1063/1.873503

Simulations of a hydrogen-filled capillary discharge waveguide
journal, December 2001


GeV electron beams from a centimetre-scale accelerator
journal, September 2006

  • Leemans, W. P.; Nagler, B.; Gonsalves, A. J.
  • Nature Physics, Vol. 2, Issue 10
  • DOI: 10.1038/nphys418

High-sensitivity plasma density retrieval in a common-path second-harmonic interferometer through simultaneous group and phase velocity measurement
journal, February 2019

  • van Tilborg, J.; Gonsalves, A. J.; Esarey, E.
  • Physics of Plasmas, Vol. 26, Issue 2
  • DOI: 10.1063/1.5080269

Physics of laser-driven plasma-based electron accelerators
journal, August 2009


Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide
journal, February 2019


Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV
journal, May 2020

  • Gonsalves, A. J.; Nakamura, K.; Benedetti, C.
  • Physics of Plasmas, Vol. 27, Issue 5
  • DOI: 10.1063/5.0002769

Molecular-dynamic calculation of the inverse-bremsstrahlung heating of non-weakly-coupled plasmas
journal, November 2004


Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry
journal, January 1982

  • Takeda, Mitsuo; Ina, Hideki; Kobayashi, Seiji
  • Journal of the Optical Society of America, Vol. 72, Issue 1
  • DOI: 10.1364/JOSA.72.000156

Hose-Modulation Instability of Laser Pulses in Plasmas
journal, December 1994


Plasma channel diagnostic based on laser centroid oscillations
journal, May 2010

  • Gonsalves, A. J.; Nakamura, K.; Lin, C.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3357175

Light pipe for high intensity laser pulses
journal, October 1993


Group velocity and pulse lengthening of mismatched laser pulses in plasma channels
journal, August 2011

  • Schroeder, C. B.; Benedetti, C.; Esarey, E.
  • Physics of Plasmas, Vol. 18, Issue 8
  • DOI: 10.1063/1.3609778