DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multi-fidelity Bayesian neural networks: Algorithms and applications

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1781852
Grant/Contract Number:  
SC0019453
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Computational Physics
Additional Journal Information:
Journal Name: Journal of Computational Physics Journal Volume: 438 Journal Issue: C; Journal ID: ISSN 0021-9991
Publisher:
Elsevier
Country of Publication:
United States
Language:
English

Citation Formats

Meng, Xuhui, Babaee, Hessam, and Karniadakis, George Em. Multi-fidelity Bayesian neural networks: Algorithms and applications. United States: N. p., 2021. Web. doi:10.1016/j.jcp.2021.110361.
Meng, Xuhui, Babaee, Hessam, & Karniadakis, George Em. Multi-fidelity Bayesian neural networks: Algorithms and applications. United States. https://doi.org/10.1016/j.jcp.2021.110361
Meng, Xuhui, Babaee, Hessam, and Karniadakis, George Em. Sun . "Multi-fidelity Bayesian neural networks: Algorithms and applications". United States. https://doi.org/10.1016/j.jcp.2021.110361.
@article{osti_1781852,
title = {Multi-fidelity Bayesian neural networks: Algorithms and applications},
author = {Meng, Xuhui and Babaee, Hessam and Karniadakis, George Em},
abstractNote = {},
doi = {10.1016/j.jcp.2021.110361},
journal = {Journal of Computational Physics},
number = C,
volume = 438,
place = {United States},
year = {2021},
month = {8}
}

Works referenced in this record:

Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond
journal, May 2016

  • Perdikaris, Paris; Karniadakis, George Em
  • Journal of The Royal Society Interface, Vol. 13, Issue 118
  • DOI: 10.1098/rsif.2015.1107

A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems
journal, January 2020


A Multifidelity Framework and Uncertainty Quantification for Sea Surface Temperature in the Massachusetts and Cape Cod Bays
journal, February 2020

  • Babaee, H.; Bastidas, C.; DeFilippo, M.
  • Earth and Space Science, Vol. 7, Issue 2
  • DOI: 10.1029/2019EA000954

Learning properties of ordered and disordered materials from multi-fidelity data
journal, January 2021


Neural-net-induced Gaussian process regression for function approximation and PDE solution
journal, May 2019


Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
journal, January 2018

  • Peherstorfer, Benjamin; Willcox, Karen; Gunzburger, Max
  • SIAM Review, Vol. 60, Issue 3
  • DOI: 10.1137/16M1082469

Bifidelity Data-Assisted Neural Networks in Nonintrusive Reduced-Order Modeling
journal, February 2021


Generalized ocean color inversion model for retrieving marine inherent optical properties
journal, January 2013

  • Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.
  • Applied Optics, Vol. 52, Issue 10
  • DOI: 10.1364/AO.52.002019

Optimization of Forcing Parameters of Film Cooling Effectiveness
journal, November 2013

  • Babaee, Hessam; Acharya, Sumanta; Wan, Xiaoliang
  • Journal of Turbomachinery, Vol. 136, Issue 6
  • DOI: 10.1115/1.4025732

Inferring solutions of differential equations using noisy multi-fidelity data
journal, April 2017

  • Raissi, Maziar; Perdikaris, Paris; Karniadakis, George Em
  • Journal of Computational Physics, Vol. 335
  • DOI: 10.1016/j.jcp.2017.01.060

An Adaptive Surrogate Modeling Based on Deep Neural Networks for Large-Scale Bayesian Inverse Problems
journal, June 2020


Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
journal, February 2019


A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot
journal, August 2009


B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data
journal, January 2021


Multi-fidelity modelling of mixed convection based on experimental correlations and numerical simulations
journal, November 2016

  • Babaee, H.; Perdikaris, P.; Chryssostomidis, C.
  • Journal of Fluid Mechanics, Vol. 809
  • DOI: 10.1017/jfm.2016.718